Answer:
E) True. The girl has a larger tangential acceleration than the boy.
Explanation:
In this exercise they do not ask us to say which statement is correct, for this we propose the solution to the problem.
Angular and linear quantities are related
v = w r
a = α r
the boy's radius is r₁ = 1.2m the girl's radius is r₂ = 1.8m
as the merry-go-round rotates at a constant angular velocity this is the same for both, but the tangential velocity is different
v₁ = w 1,2 (boy)
v₂ = w 1.8 (girl)
whereby
v₂> v₁
reviewing the claims we have
a₁ = α 1,2
a₂ = α 1.8
a₂> a₁
A) False. Tangential velocity is different from zero
B) False angular acceleration is the same for both
C) False. It is the opposite, according to the previous analysis
D) False. Angular acceleration is equal
E) True. You agree with the analysis above,
Answer:
The radius of the gold nucleus is 7.1x10⁻¹⁵m
Explanation:
The nearest distance is:
(eq. 1)
Where
z = atomic number of gold = 79
e = electron charge = 1.6x10⁻¹⁹C
k = electrostatic constant = 9x10⁹Nm²C²
energy of the particle = 32 MeV = 5.12x10⁻¹²J
At the potential energy is zero, all the energy will be kinetic energy:

Where
m = 4 mp = mass of proton

Replacing in equation 1

The mass on the spring is 0.86 kg
Explanation:
The period of a mass-spring system is given by the equation

where
m is the mass
k is the spring constant
In this problem, we have:
k = 88.7 N/m is the spring constant
The system makes 15 oscillations in 9.24 s: therefore, the period of the system is

Now we can re-arrange the first equation to solve for the mass:

Learn more about period:
brainly.com/question/5438962
#LearnwithBrainly
True! All sounds come from some type of vibrating object. Hopefully I helped!