Answer:
The value of change in internal energy of the gas = + 1850 J
Explanation:
Work done on the gas (W) = - 1850 J
Negative sign is due to work done on the system.
From the first law we know that Q = Δ U + W ------------- (1)
Where Q = Heat transfer to the gas
Δ U = Change in internal energy of the gas
W = work done on the gas
Since it is adiabatic compression of the gas so heat transfer to the gas is zero.
⇒ Q = 0
So from equation (1)
⇒ Δ U = - W ----------------- (2)
⇒ W = - 1850 J (Given)
⇒ Δ U = - (- 1850)
⇒ Δ U = + 1850 J
This is the value of change in internal energy of the gas.
Answer:
L = 0.635m
Explanation:
This problem involves the concept of stationary waves in pipes. For pipes closed at one end,
The frequency f = nv/4L for n = 1,3,5....n
For pipes open at both ends
f = nv/2L for n = 1,2,3,4...n
Assuming the pipe is closed at one end and that velocity of sound is 343m/s in air. If we are right we will obtain a whole number for n.
The film solution can be found in the attachment below.
In soccer, the ball is potential energy. When you kick the ball, it becomes kinetic energy.
Radio, microwaves, infrared, and visible light are all used for communications.
Answer:
Due to its larger size
Explanation:
This is due to those planets being much larger than Earth. The larger a planet is, the more gravity that planet has, since gravity is mainly calculated based on the mass and radius of the planet. Also since the pressure deep inside of the planet depends mainly on the gravity of that planet on the surface, this is calculated as the square of the planet's surface gravity. Ultimately, the bigger the planet is the higher the pressure deep inside the planet will be.