Examples of such quantities include distance, displacement, speed, velocity, acceleration, force, mass, momentum, energy, work, power, etc. All these quantities can by divided into two categories - vectors and scalars. A vector quantity is a quantity that is fully described by both magnitude and direction.
Answer:
The magnitude of the magnetic field is 1.83 x
T.
Explanation:
The flow of an electric current in a straight wire induces magnetic field around the wire. When current is flowing through two wires in the same direction, a force of attraction exists between the wires. But if the current flows in opposite directions, the force of repulsion is felt by the wires.
In the given question, the direction of flow of current through the wires is opposite, thus both wires applies the same field on each other. The result to repulsion between them.
The magnetic field (B) between the given wires can be determined by:
B = 
where: I is the current, r is the distance between the wires and
is the magnetic field constant.
But, I = 11 A, r = 0.12 m and
= 4
x
Tm/A
So that;
B = 
= 1.8333 x 
B = 1.83 x
T
Answer:
its A i think im not sure tho
Explanation:
Answer:
Explanation:
A) <em>Large</em>: As she opens her parachute, she begins to displace a large volume of air. This leads to a Large air resistance
B) <em>increase, weight</em>: As she falls, the air resistance force <u><em>increases</em></u>. Now there is a force acting in opposite directions to her <u><em>weight.</em></u>
C)<em>Weight, Decelerate:</em> The skydiver has only the downward force of her <u><em>weight</em></u> pulling down on her, so she starts to <u><em>decelerate</em></u>
D) <em>Weight, Upward, Resultant</em>:
Her <u><em>weight </em></u>is now equal to the <u><em>upward </em></u>force from the ground. Her <u><em>resultant </em></u>force is then zero
E) <em>Increases, same, constant, resultant, terminal</em>:
As she accelerates faster, the air resistance force <u><em>increases</em></u>. It is now the <u><em>same </em></u>as her weight. She now moves at a <u><em>constant</em></u> speed because the <u><em>resultant </em></u>force acting on her is zero. She is now at her <u><em>terminal </em></u>velocity.
F) <em>Increases, same, constant, terminal</em>:
As she decelerates, the air resistance force on her parachute <u><em>increases </em></u>until it is the <u><em>same</em></u> as her weight. She is now moving with a <u><em>constant </em></u>speed until she hits the ground - a new slower <u><em>terminal</em></u> velocity
<span>It's more accurate than scale diagrams.
You don't need tools (graph paper, protractor etc)
Also, if you are using computers, it easy to programmme.</span><span>
</span>