Answer: 20x
Step-by-step explanation:
First we should note that 60 minutes = 1 hour. Therefore, 15 minutes = 15/60 = 1/4 hour
Since Jean can pack 5 cartons in 1/4 hours, the number of carton that he can pack in one hour will be:
= 5 ÷ 1/4
= 5 × 4
= 20 cartons.
Therefore, to get the number of cartons that Jean can pack in x hours, we will multiply 20 by x. This will be:
= 20 × x
= 20x
We can use the binomial theorem to find the probability that 0 out of the 15 samples will be defective, given that 20% are defective.
P(0/15) = (15C0) (0.2)^0 (1 - 0.2)^15 = (1)(1)(0.8)^15 = 0.0352
Then the probability that at least 1 is defective is equal to 1 - 0.0352 = 0.9648. This means there is a 96.48% chance that at least 1 of the 15 samples will be found defective. This is probably sufficient, though it depends on her significance level. If the usual 95% is used, then this is enough.
You can see how this works by thinking through what's going on.
In the first year the population declines by 3%. So the population at the end of the first year is the starting population (1200) minus the decline: 1200 minus 3% of 1200. 3% of 1200 is the same as .03 * 1200. So the population at the end of the first year is 1200 - .03 * 1200. That can be written as 1200 * (1 - .03), or 1200 * 0.97
What about the second year? The population starts at 1200 * 0.97. It declines by 3% again. But 3% of what??? The decline is based on the population at the beginning of the year, NOT based no the original population. So the decline in the second year is 0.03 * (1200 * 0.97). And just as in the first year, the population at the end of the second year is the population at the beginning of the second year minus the decline in the second year. So that's 1200 * 0.97 - 0.03 * (1200 * 0.97), which is equal to 1200 * 0.97 (1 - 0.03) = 1200 * 0.97 * 0.97 = 1200 * 0.972.
So there's a pattern. If you worked out the third year, you'd see that the population ends up as 1200 * 0.973, and it would keep going like that.
So the population after x years is 1200 * 0.97x
Answer:
A.) gf(x) = 3x^2 + 12x + 9
B.) g'(x) = 2
Step-by-step explanation:
A.) The two given functions are:
f(x) = (x + 2)^2 and g(x) = 3(x - 1)
Open the bracket of the two functions
f(x) = (x + 2)^2
f(x) = x^2 + 2x + 2x + 4
f(x) = x^2 + 4x + 4
and
g(x) = 3(x - 1)
g(x) = 3x - 3
To find gf(x), substitute f(x) for x in g(x)
gf(x) = 3( x^2 + 4x + 4 ) - 3
gf(x) = 3x^2 + 12x + 12 - 3
gf(x) = 3x^2 + 12x + 9
Where
a = 3, b = 12, c = 9
B.) To find g '(12), you must first find the inverse function of g(x) that is g'(x)
To find g'(x), let g(x) be equal to y. Then, interchange y and x for each other and make y the subject of formula
Y = 3x + 3
X = 3y + 3
Make y the subject of formula
3y = x - 3
Y = x/3 - 3/3
Y = x/3 - 1
Therefore, g'(x) = x/3 - 1
For g'(12), substitute 12 for x in g' (x)
g'(x) = 12/4 - 1
g'(x) = 3 - 1
g'(x) = 2.
Answer:
q .no d
Step-by-step explanation:
64p^3+125
4p^3+ 5^3
(4p+ 5 ) ( 4p^2- 4p *5 + 5^2)
(4p+5) (16p- 20p+ 25)