1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sonbull [250]
3 years ago
7

The lift on a spinning circular cylinder in a freestream with a velocity of 30 m/s and at standard sea level conditions is 6 N/m

of span. Calculate the circulation around the cylinder
Engineering
1 answer:
Evgesh-ka [11]3 years ago
5 0

Answer:

The circulation around the cylinder is 0.163 \frac{m^{2} }{s}

Explanation:

Given :

Velocity of spinning cylinder v = 30 \frac{m}{s}

Sea level density \rho = 1.23 \frac{kg}{m^{3} }

Sea level span L = 6 \frac{N}{m}

Lift per unit circulation is given by,

  L = \rho v c

Where c = circulation around cylinder

   c = \frac{L}{\rho v}

   c = \frac{6}{1.23 \times 30}

   c = 0.163 \frac{m^{2} }{s}

Therefore, the circulation around the cylinder is 0.163 \frac{m^{2} }{s}

You might be interested in
A gas metal arc welder is also known as a _____ welder.<br> A) TIGB) GTAWC) GMAWD) Resistance spot
nignag [31]

Answer:

GMAW

Explanation:

It's literally the initials of that type of welding

7 0
3 years ago
A series of experiments is conducted in which a thin plate is subjected to biaxial tension/compression, σ1, σ2 , the plane surfa
Andrew [12]

Answer:

                                               

Explanation:

3 0
2 years ago
g For this project you are required to perform Matrix operations (Addition, Subtraction and Multiplication). For each of the ope
Kruka [31]

Answer:

C++ code is explained below

Explanation:

#include<iostream>

using namespace std;

//Function Declarations

void add();

void sub();

void mul();

//Main Code Displays Menu And Take User Input

int main()

{

  int choice;

  cout << "\nMenu";

  cout << "\nChoice 1:addition";

  cout << "\nChoice 2:subtraction";

  cout << "\nChoice 3:multiplication";

  cout << "\nChoice 0:exit";

 

  cout << "\n\nEnter your choice: ";

 

  cin >> choice;

 

  cout << "\n";

 

  switch(choice)

  {

      case 1: add();

              break;

             

      case 2: sub();

              break;

             

      case 3: mul();

              break;

     

      case 0: cout << "Exited";

              exit(1);

     

      default: cout << "Invalid";      

  }

  main();  

}

//Addition Of Matrix

void add()

{

  int rows1,cols1,i,j,rows2,cols2;

 

  cout << "\nmatrix1 # of rows: ";

  cin >> rows1;

 

  cout << "\nmatrix1 # of columns: ";

  cin >> cols1;

 

   int m1[rows1][cols1];

 

  //Taking First Matrix

  for(i=0;i<rows1;i++)

      for(j=0;j<cols1;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m1[i][j];

          cout << "\n";

      }

  //Printing 1st Matrix

  for(i=0;i<rows1;i++)

  {

      for(j=0;j<cols1;j++)

          cout << m1[i][j] << " ";

      cout << "\n";

  }

     

  cout << "\nmatrix2 # of rows: ";

  cin >> rows2;

 

  cout << "\nmatrix2 # of columns: ";

  cin >> cols2;

 

  int m2[rows2][cols2];

  //Taking Second Matrix

  for(i=0;i<rows2;i++)

      for(j=0;j<cols2;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m2[i][j];

          cout << "\n";

      }

  //Displaying second Matrix

  cout << "\n";

  for(i=0;i<rows2;i++)

  {

      for(j=0;j<cols2;j++)

          cout << m2[i][j] << " ";

      cout << "\n";

  }

  //Displaying Sum of m1 & m2

  if(rows1 == rows2 && cols1 == cols2)

  {

      cout << "\n";

      for(i=0;i<rows1;i++)

      {

          for(j=0;j<cols1;j++)

              cout << m1[i][j]+m2[i][j] << " ";

          cout << "\n";  

      }

  }

  else

      cout << "operation is not supported";

     

  main();

 

}

void sub()

{

  int rows1,cols1,i,j,k,rows2,cols2;

  cout << "\nmatrix1 # of rows: ";

  cin >> rows1;

 

  cout << "\nmatrix1 # of columns: ";

  cin >> cols1;

 

   int m1[rows1][cols1];

 

  for(i=0;i<rows1;i++)

      for(j=0;j<cols1;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m1[i][j];

          cout << "\n";

      }

 

  for(i=0;i<rows1;i++)

  {

      for(j=0;j<cols1;j++)

          cout << m1[i][j] << " ";

      cout << "\n";

  }

     

  cout << "\nmatrix2 # of rows: ";

  cin >> rows2;

 

  cout << "\nmatrix2 # of columns: ";

  cin >> cols2;

 

  int m2[rows2][cols2];

 

  for(i=0;i<rows2;i++)

      for(j=0;j<cols2;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m2[i][j];

          cout << "\n";

      }

 

  for(i=0;i<rows2;i++)

  {

      for(j=0;j<cols2;j++)

          cout << m1[i][j] << " ";

      cout << "\n";

  }

  cout << "\n";

  //Displaying Subtraction of m1 & m2

  if(rows1 == rows2 && cols1 == cols2)

  {

      for(i=0;i<rows1;i++)

      {

          for(j=0;j<cols1;j++)

              cout << m1[i][j]-m2[i][j] << " ";

          cout << "\n";  

      }

  }

  else

      cout << "operation is not supported";

     

  main();

 

}

void mul()

{

  int rows1,cols1,i,j,k,rows2,cols2,mul[10][10];

  cout << "\nmatrix1 # of rows: ";

  cin >> rows1;

 

  cout << "\nmatrix1 # of columns: ";

  cin >> cols1;

 

   int m1[rows1][cols1];

 

  for(i=0;i<rows1;i++)

      for(j=0;j<cols1;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m1[i][j];

          cout << "\n";

      }

  cout << "\n";

  for(i=0;i<rows1;i++)

  {

      for(j=0;j<cols1;j++)

          cout << m1[i][j] << " ";

      cout << "\n";

  }

     

  cout << "\nmatrix2 # of rows: ";

  cin >> rows2;

 

  cout << "\nmatrix2 # of columns: ";

  cin >> cols2;

 

  int m2[rows2][cols2];

 

  for(i=0;i<rows2;i++)

      for(j=0;j<cols2;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m2[i][j];

          cout << "\n";

      }

  cout << "\n";

  //Displaying Matrix 2

  for(i=0;i<rows2;i++)

  {

      for(j=0;j<cols2;j++)

          cout << m2[i][j] << " ";

      cout << "\n";

  }

     

  if(cols1!=rows2)

      cout << "operation is not supported";

  else

  {

      //Initializing results as 0

      for(i = 0; i < rows1; ++i)

  for(j = 0; j < cols2; ++j)

  mul[i][j]=0;

// Multiplying matrix m1 and m2 and storing in array mul.

  for(i = 0; i < rows1; i++)

  for(j = 0; j < cols2; j++)

  for(k = 0; k < cols1; k++)

  mul[i][j] += m1[i][k] * m2[k][j];

// Displaying the result.

  cout << "\n";

  for(i = 0; i < rows1; ++i)

      for(j = 0; j < cols2; ++j)

      {

      cout << " " << mul[i][j];

      if(j == cols2-1)

      cout << endl;

      }

      }  

  main();

 }

5 0
2 years ago
If you are driving a 30-foot
Ratling [72]

Answer:

3 sec

If you are driving a 30-foot vehicle at 55 mph, how many seconds of following distance should you allow? 30ft truck. = 3 sec. Since the truck is over 40 mph.

Explanation:

5 0
3 years ago
A person is planning a bungee jump from a 40 meter high bridge. Under the bridge is a river with crocodiles, so the person does
Nonamiya [84]

Answer:

a. l = 19.7m, b. 18.55m, c. Impact Force = 3889.84 N

Explanation:

The total energy of the system when the person is at top of the bridge is

Potential energy = mgh, Kinetic energy = 0

The total energy of the  system when the person reaches just above the surface

Potential energy = 0, Kinetic energy = 0, Spring energy = ½ K X2, where k is the spring constant and X is the deflection

Applying conservation of energy

mgh = 0 + 0 + ½ K X²

80 x 9.81 x 40 = ½ (3600/l) X²

31392 = ½ (3600/l) X²

We can also conclude that

l+ X + 1.75 = 40

l + X = 38.25

a. <u>Substitute the value of x from above into the energy conversion expression</u>

31392 = ½ (3600/l)(38.25 - l)²

31392 x 2/3600 = (38.25 + l² – 2l(38.25))/l

17.44l = l2 – 76.5l + 38.25²

l² – 76.5l – 17.44l +1463.0625 = 0

Solving for l we get

L = 19.7

Hence, length of the rope is 19.7m

b. <u>The deflection is calculated by using the relation between l and X</u>

L + X = 38.25

X = 38.25 – 19.7 = 18.55m

c. <u>The impact force is calculated using the impact force formula which relates the impact force with the deflection</u>

F = KX

F = (3600/l) . X

F = (3600/19.7) . (18.55) = 3889.84 N

Thus, the impact force is 3889.84 N

3 0
3 years ago
Other questions:
  • Using Von Karman momentum integral equation, find the boundary layer thickness, the displacement thickness, the momentum thickne
    14·1 answer
  • You can divide a surface by drawing a line through it
    9·2 answers
  • . Carly's Catering provides meals for parties and special events. In Chapter 2, you wrote an application that prompts the user f
    10·1 answer
  • A package is thrown down an incline at A with a velocity of 1 m/s. The package slides along the surface ABC to a conveyor belt w
    13·1 answer
  • Item110pointseBook HintPrintReferences Check my work Check My Work button is now disabled5Item 1Item 1 10 pointsAn ideal Diesel
    10·1 answer
  • On a cold winter day, wind at 55 km/hr is blowing parallel to a 4-m high and 10-m long wall of a house. If the air outside is at
    8·1 answer
  • What should you do before you start welding?
    9·1 answer
  • What building codes did Mega Corporation fail to follow?
    9·1 answer
  • A reservoir rock system located between a depth of 2153m and a depth of
    10·1 answer
  • A kitchen contains one section of counter that's 20 inches
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!