1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sonbull [250]
3 years ago
7

The lift on a spinning circular cylinder in a freestream with a velocity of 30 m/s and at standard sea level conditions is 6 N/m

of span. Calculate the circulation around the cylinder
Engineering
1 answer:
Evgesh-ka [11]3 years ago
5 0

Answer:

The circulation around the cylinder is 0.163 \frac{m^{2} }{s}

Explanation:

Given :

Velocity of spinning cylinder v = 30 \frac{m}{s}

Sea level density \rho = 1.23 \frac{kg}{m^{3} }

Sea level span L = 6 \frac{N}{m}

Lift per unit circulation is given by,

  L = \rho v c

Where c = circulation around cylinder

   c = \frac{L}{\rho v}

   c = \frac{6}{1.23 \times 30}

   c = 0.163 \frac{m^{2} }{s}

Therefore, the circulation around the cylinder is 0.163 \frac{m^{2} }{s}

You might be interested in
A reservoir delivers water to a horizontal pipeline 39 long The first 15 m has a diameter of 50 mm, after which it suddenly beco
allsm [11]

Answer:

The difference of head in the level of reservoir is 0.23 m.

Explanation:

For pipe 1

d_1=50 mm,f_1=0.0048

For pipe 2

d_2=75 mm,f_2=0.0058

Q=2.8 l/s

Q=2.8\times 10^{-3]

We know that Q=AV

Q=A_1V_1=A_2V_2

A_1=1.95\times 10^{-3}m^2

A_2=4.38\times 10^{-3} m^2

So V_2=0.63 m/s,V_1=1.43 m/s

head loss (h)

h=\dfrac{f_1L_1V_1^2}{2gd_1}+\dfrac{f_2L_2V_2^2}{2gd_2}+0.5\dfrac{V_1^2}{2g}

Now putting the all values

h=\dfrac{0.0048\times 15\times 1.43^2}{2\times 9.81\times 0.05}+\dfrac{0.0058\times 24\times 0.63^2}{2\times 9.81\times 0.075}+0.5\dfrac{1.43^2}{2\times 9.81}

So h=0.23 m

So the difference of head in the level of reservoir is 0.23 m.

8 0
3 years ago
You have a motor such that if you give it 12 Volt, it will eventually reach a steady state speed of 200 rad/s. If it starts from
Aleksandr [31]

Answer:

a) \frac{Ws}{Es}  = \frac{200}{1+1.2s}

b) attached below

c) type zero system

d) k > \frac{g}{200}

e) The gain K increases above % error as the  steady state speed increases

Explanation:

Given data:

Motor voltage  = 12 v

steady state speed = 200 rad/s

time taken to reach 63.2% = 1.2 seconds

<u>a) The transfer function of the motor from voltage to speed</u>

let ; \frac{K1}{1+St} be the transfer function of a motor

when i/p = 12v then steady state speed ( k1 ) = 200 rad/s , St ( time constant ) = 1.2 sec

hence the transfer function of the motor from voltage to speed

= \frac{Ws}{Es}  = \frac{200}{1+1.2s}

<u>b) draw the block diagram of the system with plant controller and the feedback path </u>

attached below is the remaining part of the detailed solution

c) The system is a type-zero system because the pole at the origin is zero

d) ) k > \frac{g}{200}

7 0
3 years ago
Force = 33 newtons
kicyunya [14]

Answer:

answer

Explanation:

4 0
3 years ago
A geothermal heat pump absorbs 15 KJ/s of heat from the Earth 15 m below a house. This heat pump uses a 7.45 kJ/s compressor.
Anna007 [38]

Answer:

COP of the heat pump is 3.013

OP of the cycle is  1.124

Explanation:

W = Q₂ - Q₁

Given

a)

Q₂ = Q₁ + W

     = 15 + 7.45

     = 22.45 kw

COP = Q₂ / W = 22.45 / 7.45 = 3.013

b)

Q₂ = 15 x 1.055 = 15.825 kw

therefore,

Q₁ = Q₂ - W

Q₁ = 15.825 - 7.45 = 8.375

∴ COP = Q₁ / W = 8.375 / 7.45 = 1.124

4 0
3 years ago
Read 2 more answers
A fluid of density 900 kg/m3 passes through a converging section of an upstream diameter of 50 mm and a downstream diameter of 2
NISA [10]

Answer:

Q= 4.6 × 10⁻³ m³/s

actual velocity will be equal to 8.39 m/s

Explanation:

density of fluid = 900 kg/m³

d₁ = 0.025 m

d₂ = 0.05 m

Δ P = -40 k N/m²

C v = 0.89

using energy equation

\dfrac{P_1}{\gamma}+\dfrac{v_1^2}{2g} = \dfrac{P_2}{\gamma}+\dfrac{v_2^2}{2g}\\\dfrac{P_1-P_2}{\gamma}=\dfrac{v_2^2-v_1^2}{2g}\\\dfrac{-40\times 10^3\times 2}{900}=v_2^2-v_1^2

under ideal condition v₁² = 0

v₂² = 88.88

v₂ = 9.43 m/s

hence discharge at downstream will be

Q = Av

Q = \dfrac{\pi}{4}d_1^2 \times v

Q = \dfrac{\pi}{4}0.025^2 \times 9.43

Q= 4.6 × 10⁻³ m³/s

we know that

C_v =\dfrac{actual\ velocity}{theoretical\ velocity }\\0.89 =\dfrac{actual\ velocity}{9.43}\\actual\ velocity = 8.39m/s

hence , actual velocity will be equal to 8.39 m/s

6 0
3 years ago
Other questions:
  • What are cars manufactured with today that allows for quick stopping without the brakes locking up?
    5·1 answer
  • Under which of the following conditions is a Type B-1 Fire extinguisher required onboard a motorized vessel?
    14·2 answers
  • Is there a way to get the answers to a NCCER book test?
    7·1 answer
  • Calculate the potential energy in kJ of a human body (70 kg) possesses on top of the Empire State Building (1,250 ft tall).
    7·1 answer
  • Please Help !!
    5·1 answer
  • Ring rolling is a deformation process in which a thick-walled ring of smaller diameter is rolled into a thin-walled ring of larg
    11·1 answer
  • Compare the temperature dependence of Nabarro-Herring and Coble creep. Which is more temperature-sensitive
    15·1 answer
  • What does it mean to say that PEER is a data-driven, consumer-centric, and comprehensive system?
    8·2 answers
  • Find the value of L
    9·1 answer
  • Rotating magnetic field inside a set of conducting wires is a simple description of a what
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!