1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zolol [24]
4 years ago
7

What is the first step in the problem-solving process, as well as in the engineering design process?

Engineering
1 answer:
DENIUS [597]4 years ago
5 0

Answer:

C. Brainstorm

Explanation:

<em>Brainstorming refers to thinking and developing ideas and solutions to problems</em>. It involves a free-thinking approach and putting oneself in the context of the problem you are attempting to solve. You can use the empathy maps to combine ideas from interviewing other people on the same. This stage is followed by defining the problem, concept generation, developing a solution, constructing a testing a prototype, evaluating the solution and finally presenting the solution.

Answer choice A is incorrect because it is the last stage .

Answer choice B is incorrect because it is the second stage.

Answer choice D is incorrect because it is step 5 and 6.

You might be interested in
Why do giant stars become planetary nebulas while supergiant stars become supernovas when their nuclear fusion slows and is over
sashaice [31]

The reason why giant stars become planetary nebulas is  Supergiant stars do not have enough mass to generate the gravity necessary to cause a planetary nebula.

<h3>Why do giant stars become planetary nebulae?</h3>

A planetary nebula is known to be formed or created by a dying star. A red giant is known to be unstable and thus emit pulses of gas that is said to form a sphere around the dying star and thus they are said to  be ionized by the ultraviolet radiation that the star is known to releases.

Learn more about  giant stars from

brainly.com/question/27111741

#SPJ1

3 0
2 years ago
Determine the required dimensions of a column with a square cross section to carry an axial compressive load of 6500 lb if its l
ycow [4]

Answer: 0.95 inches

Explanation:

A direct load on a column is considered or referred to as an axial compressive load. A direct concentric load is considered axial. If the load is off center it is termed eccentric and is no longer axially applied.

The length= 64 inches

Ends are fixed Le= 64/2 = 32 inches

Factor Of Safety (FOS) = 3. 0

E= 10.6× 10^6 ps

σy= 4000ps

The square cross-section= ia^4/12

PE= π^2EI/Le^2

6500= 3.142^2 × 10^6 × a^4/12×32^2

a^4= 0.81 => a=0.81 inches => a=0.95 inches

Given σy= 4000ps

σallowable= σy/3= 40000/3= 13333. 33psi

Load acting= 6500

Area= a^2= 0.95 ×0.95= 0.9025

σactual=6500/0.9025

σ actual < σallowable

The dimension a= 0.95 inches

3 0
3 years ago
Read 2 more answers
A consolidation test was performed on a sample of fine-grained soil sample taken from a depth such that the vertical effective s
Scorpion4ik [409]

Answer:

The settlement that is expected is 1.043 meters.

Explanation:

Since the pre-consolidation stress of the layer is equal to the effective stress hence we conclude that the soil is normally consolidated soil

The settlement due to increase in the effective stress of a normally consolidated soil mass is given by the formula

\Delta H=\frac{H_oC_c}{1+e_o}log(\frac{\bar{\sigma_o}+\Delta \bar{\sigma }}{\bar{\sigma_o}})

where

'H' is the initial depth of the layer

C_c is the Compression index

e_o is the inital void ratio

\bar{\sigma_o} is the initial effective stress at the depth

\Delta \bar{\sigma_o} is the change in the effective stress at the given depth

Applying the given values we get

\Delta H=\frac{8\times 0.3}{1+0.87}log(\frac{154+28}{154})=1.04

3 0
3 years ago
Why would the shear stress be considered as the momentum flux.
oksano4ka [1.4K]

Answer:

A fluid flowing along a flat plate will stick to it at the point of contact

Explanation:

and this is known as the no-slip condition. ... This is the precise reason why shear stress in a fluid can also be interpreted as the flux of momentum.

3 0
2 years ago
Tensile Strength (MPa) Number-Average Molecular Weight (g/mol)
IceJOKER [234]

Answer:

\mathbf{T_{S \infty } \ \approx 215.481 \ MPa}

\mathbf{M_n = 49163.56431  \ g/mol }

Explanation:

The question can be well structured in a table format as illustrated below:

Tensile Strength (MPa)            Number- Average Molecular Weight  (g/mol)

82                                                  12,700

156                                                 28,500

The tensile strength and number-average molecular weight for two polyethylene materials given above.

Estimate the number-average molecular weight that is required to give a tensile strength required above. Using the data given find TS (infinity) in MPa.

<u>SOLUTION:</u>

We know that :

T_S = T_{S \infty} - \dfrac{A}{M_n}

where;

T_S = Tensile Strength

T_{S \infty} = Tensile Strength (Infinity)

M_n = Number- Average Molecular Weight  (g/mol)

SO;

82= T_{S \infty} - \dfrac{A}{12700} ---- (1)

156= T_{S \infty} - \dfrac{A}{28500} ---- (2)

From equation (1) ; collecting the like terms; we have :

T_{S \infty} =82+ \dfrac{A}{12700}

From equation (2) ; we have:

T_{S \infty} =156+ \dfrac{A}{28500}

So; T_{S \infty} = T_{S \infty}

Then;

T_{S \infty} =82+ \dfrac{A}{12700} =156+ \dfrac{A}{28500}

Solving by L.C.M

\dfrac{82(12700) + A}{12700} =\dfrac{156(28500) + A}{28500}

\dfrac{1041400 + A}{12700} =\dfrac{4446000 + A}{28500}

By cross multiplying ; we have:

({4446000 + A})*  {12700} ={28500} *({1041400 + A})

(5.64642*10^{10} + 12700A) =(2.96799*10^{10}+ 28500A)

Collecting like terms ; we have

(5.64642*10^{10} - 2.96799*10^{10} ) =( 28500A- 12700A)

2.67843*10^{10}  = 15800 \ A

Dividing both sides by 15800:

\dfrac{ 2.67843*10^{10} }{15800} =\dfrac{15800 \ A}{15800}

A = 1695208.861

From equation (1);

82= T_{S \infty} - \dfrac{A}{12700} ---- (1)

Replacing A = 1695208.861 in the above equation; we have:

82= T_{S \infty} - \dfrac{1695208.861}{12700}

T_{S \infty}= 82 + \dfrac{1695208.861}{12700}

T_{S \infty}= \dfrac{82(12700) +1695208.861 }{12700}

T_{S \infty}= \dfrac{1041400 +1695208.861 }{12700}

T_{S \infty}= \dfrac{2736608.861 }{12700}

\mathbf{T_{S \infty } \ \approx 215.481 \ MPa}

From equation(2);

156= T_{S \infty} - \dfrac{A}{28500} ---- (2)

Replacing A = 1695208.861 in the above equation; we have:

156= T_{S \infty} - \dfrac{1695208.861}{28500}

T_{S \infty}= 156 + \dfrac{1695208.861}{28500}

T_{S \infty}= \dfrac{156(28500) +1695208.861 }{28500}

T_{S \infty}= \dfrac{4446000 +1695208.861 }{28500}

T_{S \infty}= \dfrac{6141208.861}{28500}

\mathbf{T_{S \infty } \ \approx 215.481 \ MPa}

We are to also estimate the number- average molecular weight that is required to give a tensile strength required above.

If the Tensile Strength (MPa) is 82 MPa

Definitely the average molecular weight will be = 12,700 g/mol

If the Tensile Strength (MPa) is 156 MPa

Definitely the average molecular weight will be = 28,500 g/mol

But;

Let us assume that the Tensile Strength (MPa) = 181 MPa for example.

Using the same formula:

T_S = T_{S \infty} - \dfrac{A}{M_n}

Then:

181 = 215.481- \dfrac{1695208.861 }{M_n}

Collecting like terms ; we have:

\dfrac{1695208.861 }{M_n} = 215.481-  181

\dfrac{1695208.861 }{M_n} =34.481

1695208.861= 34.481 M_n

Dividing both sides by 34.481; we have:

M_n = \dfrac{1695208.861}{34.481}

\mathbf{M_n = 49163.56431  \ g/mol }

5 0
3 years ago
Other questions:
  • . A constant current of 1 ampere is measured flowing into the positive reference terminal of a pair of leads whose voltage we’ll
    10·1 answer
  • 10. Which of these requires a wheel alignment after replacement?
    11·2 answers
  • How are scientific discoveries used in engineering design?
    12·1 answer
  • Explain the use of remote sensing in surveying.​
    8·1 answer
  • 7. The binary addition 1 + 1 + 1 gives ​
    12·2 answers
  • A fair die is thrown, What is the probability gained if you are told that 4 will
    12·1 answer
  • 3Px=y−y2p2<br><br>first order higher dgree​
    11·1 answer
  • An atom that gained an electron is called​
    10·2 answers
  • .If aligned and continuous carbon fibers with a diameter of 6.90 micron are embedded within an epoxy, such that the bond strengt
    11·1 answer
  • A new approval process is being adapted by Ursa Major Solar. After an opportunity has been approved, the contract is sent to the
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!