The car’s velocity at the end of this distance is <em>18.17 m/s.</em>
Given the following data:
- Initial velocity, U = 22 m/s
- Deceleration, d = 1.4

To find the car’s velocity at the end of this distance, we would use the third equation of motion;
Mathematically, the third equation of motion is calculated by using the formula;

Substituting the values into the formula, we have;

<em>Final velocity, V = 18.17 m/s</em>
Therefore, the car’s velocity at the end of this distance is <em>18.17 m/s.</em>
<em></em>
Read more: brainly.com/question/8898885
Answer:
Time period, 
Explanation:
Given that,
The quartz crystal used in an electric watch vibrates with a frequency of 32,768 Hz, f = 32768 Hz
We need to find the period of the crystal's motion. The relationship between the frequency and the time period is given by :

T is the time period of the crystal's motion.
Time period is given by :

So, the time period of the crystal's motion is
. Hence, this is the required solution.
We know,
V= f× wavelength
10.5= f×0.15
f=10.5/0.15
f= 70 Hz
. . . 'protect' its domestic steel industry, by
increasing the price of imported steel.
The range of a projectile can be found directly using:
R = (v²sin2∅) / g
v = √((98 x 9.81)/(sin(90)))
v = 31.0 m/s