Explanation:
It is given that, the position of a particle as as function of time t is given by :

Let v is the velocity of the particle. Velocity of an object is given by :

![v=\dfrac{d[(8t+9)i+(2t^2-8)j+6tk]}{dt}](https://tex.z-dn.net/?f=v%3D%5Cdfrac%7Bd%5B%288t%2B9%29i%2B%282t%5E2-8%29j%2B6tk%5D%7D%7Bdt%7D)

So, the above equation is the velocity vector.
Let a is the acceleration of the particle. Acceleration of an object is given by :

![a=\dfrac{d[8i+4tj+6k]}{dt}](https://tex.z-dn.net/?f=a%3D%5Cdfrac%7Bd%5B8i%2B4tj%2B6k%5D%7D%7Bdt%7D)

At t = 0, 

Hence, this is the required solution.
D, Mercury as a weaker gravitational pull! Due to mercury being farther from the sun and it being a smaller planet it has a weaker pull
Answer:
Explanation:
Given that
The mass of the body is 0.04kg
M=0.04kg
The radius of the paths is 0.6m
r=0.6m
The normal force exerted at A is 3.9N
Fa=3.9N
The normal force exerted at B is 0.69N
Fb=0.69N
Then work done by friction from point A to B will be the change in K.E
W=∆K.E+P.E
So we need to know the velocity at both point A and B
Then since the centripetal force is given as
Ft=mv²/r
Then,
For point A
Fa=mv²/r
3.9=0.04v²/0.6
3.9=0.0667v²
v²=3.9/0.0667
v²=58.5
v=√58.5
v=7.65m/s
Va=7.65m/s
Now at point B
Fb=mv²/r
0.69=0.04v²/0.6
0.69=0.0667v²
v²=0.69/0.0667
v²=10.35
v=√10.35
v=3.22m/s
Vb=3.22m/s
Then, the work done is
W=∆K.E+P.E
P.E is given as mgh
The height will be 2R =1.2m
P.E=mgh
P.E=0.04×9.81×1.2
P.E=0.471J
Final kinetic energy at B minus initial kinetic energy at A
W=K.Eb-K.Ea
K.E is given as 1/2mv²
W=1/2m(Vb²-Va²) +P.E
W=0.5×0.04(3.22²-7.65²) +0.471
W=0.5×0.04×(-48.1541) +0.471
W=-0.96+0.471
W=-0.49J
work was done on the block by friction during the motion of the block from point A to point B is 0.49J.
Friction opposes motions and that is why the work done is negative