In an ionic bond :
=》B. one atom accepts electrons from another.
in this bond an atom ( <em><u>metallic</u></em> ) loses its electrons and another atom ( <em><u>non- metallic</u></em> ) accepts the electrons, and since there isn't the equal positive and negative charges in the atoms, they forms <em><u>cations</u></em> ( +ve charge ) and <em><u>anions </u></em>( -ve charge )
and get stacked or <em><u>attracted</u></em> to each other by strong <em><u>electrostatic force</u></em>.
To rank the effective nuclear charge Z* experienced by a valence electrons of a set of atoms that belong to a same period, you only need to apply the rule of trend: it increases as you move from left to right in the period.
So, lets do it for these atoms: P, Al, Si, Cl
The belong to a same period and the order is Al, Si, P, Cl (just see a periodic table). So the rank is Al < Si < P < Cl
Now, lets do it for these atoms:, Be, Ne, O, C
They belong to the second period. The order is Be, C, O, Ne
So, the rank is Be < C < O < Ne.
Answer:
See explanation below
Explanation:
In an electrochemical cell, electricity is obtained by the gradual deterioration of the anode.
Hence, surface area of the metal will affect the length of time within which the electrochemical cell works.
The greater the surface area of the metal, the longer the electrochemical cell can function and the greater the quantity of electricity produced, hence the answer above.
The first one is D, the second one is A and the last is C and D
Answer:
Answer: A. Gases are easily compressed because of the low density.
Explanation: