This is true they are defined as protons
Answer:
they must have same atomic number and different atomic mass
Answer:
Take a look at the attachment below
Explanation:
Take a look at the periodic table. As you can see, Rubidium is the closest element to Cesium, and happens to have the closest boiling point to Cesium, with only a difference of about 30 degrees.
Respectively, you would think that fluorine should have the least similarity to Cesium with respect to it's boiling point, considering it is the farthest away from the element out of the 4 given. This is not an actual rule, there are no fixed trends of boiling points in the periodic table, there are some but overall the trends vary. However in this case fluorine does have the least similarity to Cesium with respect to it's boiling point, a difference of about 1,546.6 degrees.
<em>Hope that helps!</em>
2 SO₃ --> 2 SO₂ + O₂
I 12 0 0
C -2x +2x +x
---------------------------------------------
E 12-2x 2x x
Since the moles of SO₂ at equilibrium is 3 mol, 2x = 3. Then, x = 1.5 mol. So, the amounts at equilibrium is:
SO₃: 12 - 2(1.5) = 9
SO₂: 2(1.5) = 3
O₂: 1.5
The formula for K basing on the stoichiometric reaction is:
K = [SO₂]²[O₂]/[SO₃]²
where the unit used is conc in mol/L.
K = [3 mol/3 L]²[1.5 mol/3 L]/[9 mol/3 L]²
<em>K = 0.0556</em>
<u><em>on the basis of the reaction of heat in plastic , their are two types of plastics : </em></u>
<h2><u>
<em>Thermoplastic & Thermosetting plastics </em></u></h2>
<u><em>Thermoplastics : Plastics which easily get deformed (become soft )on heating and also get bend easily are known as thermoplastics . </em></u>
<u><em>examples : polythene , polyvinyl chloride and polystyrene .</em></u>
<u><em>thermosetting plastics : plastics which once moulded into a shape do not become soft on heating and cannot be moulded again are called thermosetting plastics .</em></u>
<u><em>examples : bakelite , melamine and formica</em></u>