Answer:
1. true
2. false
3. true
4. true
Explanation:
I believe these are the answers, I'm just not sure for #3
Answer:
It is possible she could get one.
Explanation:
To solve this problem we need to convert 98.3 kilometers/hour to miles/hour.
In other words, we <u>convert km to mi</u>, to do so we multiply 98.3 km by a <em>conversion factor</em>, putting the unit we want to have in the numerator, and the unit we want to convert in the denominator:
- 98.3 km *
= 61 mi
Given that the little old lady is doing 61 miles/hour, she could get a speeding ticket.
Answer:
The new partial pressures after equilibrium is reestablished:



Explanation:

At equilibrium before adding chlorine gas:
Partial pressure of the 
Partial pressure of the 
Partial pressure of the 
The expression of an equilibrium constant is given by :


At equilibrium after adding chlorine gas:
Partial pressure of the 
Partial pressure of the 
Partial pressure of the 
Total pressure of the system = P = 263.0 Torr




At initail
(13.2) Torr (32.8) Torr (13.2) Torr
At equilbriumm
(13.2-x) Torr (32.8-x) Torr (217.0+x) Torr


Solving for x;
x = 6.402 Torr
The new partial pressures after equilibrium is reestablished:



Answer:
5.5 L
Explanation:
First we <u>convert 10 g of propane gas</u> (C₃H₈) to moles, using its <em>molar mass</em>:
- 10 g ÷ 44 g/mol = 0.23 mol
Then we <u>use the PV=nRT formula</u>, where:
- P = 1 atm & T = 293 K (This are normal conditions of T and P)
- R = 0.082 atm·L·mol⁻¹·K⁻¹
1 atm * V = 0.23 mol * 0.082 atm·L·mol⁻¹·K⁻¹ * 293 K