Consider the isomerization of butane with equilibrium constant is 2.5 .The system is originally at equilibrium with :
[butane]=1.0 M , [isobutane]=2.5 M
If 0.50 mol/L of butane is added to the original equilibrium mixture and the system shifts to a new equilibrium position, what is the equilibrium concentration of each gas?
Answer:
The equilibrium concentration of each gas:
[Butane] = 1.14 M
[isobutane] = 2.86 M
Explanation:
Butane ⇄ Isobutane
At equilibrium
1.0 M 2.5 M
After addition of 0.50 M of butane:
(1.0 + 0.50) M -
After equilibrium reestablishes:
(1.50-x)M (2.5+x)
The equilibrium expression will wriiten as:
![K_c=\frac{[Isobutane]}{[Butane]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BIsobutane%5D%7D%7B%5BButane%5D%7D)

x = 0.36 M
The equilibrium concentration of each gas:
[Butane]= (1.50-x) = 1.50 M - 0.36M = 1.14 M
[isobutane]= (2.5+x) = 2.50 M + 0.36 M = 2.86 M
Answer:
Moment=Force x Pivot
Explanation:
A moment is the turning effect of a force. Moments act about a point in a clockwise or anticlockwise direction.
Law of moments:
When an object is balanced (in equilibrium) the sum of the clockwise moments is equal to the sum of the anticlockwise moments.
How to calculate moments:
Moment=Force x Pivot
Carbon monoxide (CO) is a colorless, odorless, and tasteless gas that is slightly less dense than air. ... Carbon monoxide consists of one carbon atom and one oxygen atom, connected by a triple bond that consists of two covalent bonds as well as one dative covalent bond.
I think it's probably not right.
Answer:
Via covalent bonds
Explanation:
Atoms in molecules are bonded together via covalent bonds. Covalent bonds are bonds that are formed by sharing of the valence electrons between two atoms.
The atoms can be of the same kind or of different kinds.
- In most molecules, the two atoms are connected by sharing of their valence electrons.
- This way, each atom can attain stability by becoming isoelectric with the nearest noble gas.
- Some molecules are monoatomic, some are polyatomic.
Answer:
Point of neutralization.
Explanation:
Indicators are used in titration experiments to show when the solution's pH is changing. For instance, a common indicator, phenolphthalein, turns pink in basic solutions, while it remains colorless in acidic solutions. The solution would turn a very light shade of pink when the pH reached above 7.