I am guessing that your solutions of HCl and of NaOH have approximately the same concentrations. Then the equivalence point will occur at pH 7 near 25 mL NaOH.
The steps are already in the correct order.
1. Record the pH when you have added 0 mL of NaOH to your beaker containing 25 mL of HCl and 25 mL of deionized water.
2. Record the pH of your partially neutralized HCl solution when you have added 5.00 mL of NaOH from the buret.
3. Record the pH of your partially neutralized HCl solution when you have added 10.00 mL, 15.00 mL and 20.00 mL of NaOH.
4. Record the NaOH of your partially neutralized HCl solution when you have added 21.00 mL, 22.00 mL, 23.00 mL and 24.00 mL of NaOH.
5. Add NaOH one drop at a time until you reach a pH of 7.00, then record the volume of NaOH added from the buret ( at about 25 mL).
6. Record the pH of your basic HCl-NaOH solution when you have added 26.00 mL, 27.00 mL, 28.00 mL, 29.00 mL and 30.00 mL of NaOH.
7. Record the pH of your basic HCl-NaOH solution when you have added 35.00 mL, 40.00 mL, 45.00 mL and 50.00 mL of NaOH from your 50mL buret.
Answer: Although the best-known cause of a mass extinction is the asteroid impact that killed off the non-avian dinosaurs, in fact, volcanic activity seems to have wreaked much more havoc on Earth's biota. Volcanic activity is implicated in at least four mass extinctions, while an asteroid is a suspect in just one. Examples, of mass extinctions are Permian extinction of marine species, and Cretaceous extinction of various species, including dinosaurs.
In order to accomplish work on an object there must be a force exerted on the object and it must move in the direction of the force. ... For the special case of a constant force, the work may be calculated by multiplying the distance times the component of force which acts in the direction of motion.
Answer:
What happens when it is squeezed is that its volume increases, the pressure of the material increases.
Explanation:
This is due to the fact that the elastic modulus of the sponge is high and withstands broad forces without deforming its structure, since the force is made within the proportional limit of its particles without modifying or permanently deforming them, that is why when stopping doing pressure or force on it its shape returns to being the original, this also happens due to the phenomenon of resilience
Answer:
pH = 7.8
Explanation:
The Henderson-Hasselbalch equation may be used to solve the problem:
pH = pKa + log([A⁻] / [HA])
The solution of concentration 0.001 M is a formal concentration, which means that it is the sum of the concentrations of the different forms of the acid. In order to find the concentration of the deprotonated form, the following equation is used:
[HA] + [A⁻] = 0.001 M
[A⁻] = 0.001 M - 0.0002 M = 0.0008 M
The values can then be substituted into the Henderson-Hasselbalch equation:
pH = 7.2 + log(0.0008M/0.0002M) = 7.8