X²(x - 4) +4 (x - 4)
(x² + 4) (x - 4)
First find the common terms that can enter into both x³ and 4x² then write its down in this case it’s x² that can enter x³ leaving only x _since x³/x² = subtract of the indices. x² will also enter 4x² leaving only four hence you having x² (x - 4)
then do the same for the next pair of terms giving you 4 that can enter into both 4 and 16
Leaving you with +4 (x - 4)
Now you can put the common terms together like so (x² + 4) and choose get one of the other two which are the same= (x - 4)
= (x² + 4) (x - 4)
Answer:
Volume = 120 cubic cm
Step-by-step explanation:
We would apply the formula for determining the volume of a square bases pyramid which is expressed as
Volume = 1/3 x base area x height
From the diagram,
length of square base = 6 cm
The base area = 6^2 = 36
height = 10
Thus,
Volume = 1/3 x 3/6 x 10
Volume = 120 cubic cm
I hope this help you! :)
Answer:
<h2><DEF = 40</h2><h2><EBF = <EDF = 56</h2><h2><DCF = <DEF =40</h2><h2><CAB = 84</h2>
Step-by-step explanation:
In triangle DEF, we have:
<u>Given</u>:
<EDF=56
<EFD=84
So, <DEF =180 - 56 - 84 =40 (sum of triangle angles is 180)
____________
DE is a midsegment of triangle ACB
( since CD=DA(given)=>D is midpoint of [CD]
and BE = EA => E midpoint of [BA] )
According to midsegment Theorem,
(DE) // (CB) "//"means parallel
and DE = CB/2 = FB =CF
___________
DEBF is a parm /parallelogram.
<u>Proof</u>: (DE) // (FB) ( (DE) // (CB))
AND DE = FB
Then, <EBF = <EDF = 56
___________
DEFC is parm.
<u>Proof</u>: (DE) // (CF) ((DE) // (CB))
And DE = CF
Therefore, <DCF = <DEF =40
___________
In triangle ACB, we have:
<CAB =180 - <ACB - <ABC =180 - 40 - 56 =84(sum of triangle angles is 180)

The odds of getting a red first is 5/12. the odds of getting a green second is 7/11. the probability of both is then 5/12 * 7/11, or 35/132
Answer:
ill give u the answer if u do 73 divided by 2628
Step-by-step explanation: