You will need to turn this into scientific notation, so:
1.176 × 10^1 cm^2
To two significant figures means to two digits so since 7 is greater than 5, you will need to round up.
Final answer is:
1.2×10^1 cm^2
Complete Question
Planet D has a semi-major axis = 60 AU and an orbital period of 18.164 days. A piece of rocky debris in space has a semi major axis of 45.0 AU. What is its orbital period?
Answer:
The value is
Explanation:
From the question we are told that
The semi - major axis of the rocky debris 
The semi - major axis of Planet D is 
The orbital period of planet D is 
Generally from Kepler third law

Here T is the orbital period while a is the semi major axis
So

=>
=> ![T_R = 18.164 * [\frac{ 45}{60} ]^{\frac{3}{2} }](https://tex.z-dn.net/?f=T_R%20%20%3D%2018.164%20%20%2A%20%20%5B%5Cfrac%7B%2045%7D%7B60%7D%20%5D%5E%7B%5Cfrac%7B3%7D%7B2%7D%20%7D)
=>
Answer:
L = 5076.5 kg m² / s
Explanation:
The angular momentum of a particle is given by
L = r xp
L = r m v sin θ
the bold are vectors, where the angle is between the position vector and the velocity, in this case it is 90º therefore the sine is 1
as we have two bodies
L = 2 r m v
let's find the distance from the center of mass, let's place a reference frame on one of the masses
=
i
x_{cm} =
x_{cm} =
x_{cm} =
x_{cm} = 13.1 / 2 = 6.05 m
let's calculate
L = 2 6.05 74.3 5.65
L = 5076.5 kg m² / s