Answer:
a. FALSE
b.TRUE
C. FALSE
Explanation:
The formula fot the distance between two points is given as

hence we determine the distances between all the points
a.P(3,2,-4), Q(1,0,-4), R(2,1,1)

For point PR
we have


B. For point RP

for point RQ we have

|RP|=|R Q|
C.

For point Q R


Complete Question
A spherical wave with a wavelength of 2.0 mm is emitted from the origin. At one instant of time, the phase at r_1 = 4.0 mm is π rad. At that instant, what is the phase at r_2 = 3.5 mm ? Express your answer to two significant figures and include the appropriate units.
Answer:
The phase at the second point is 
Explanation:
From the question we are told that
The wavelength of the spherical wave is 
The first radius is 
The phase at that instant is 
The second radius is 
Generally the phase difference is mathematically represented as

this can also be expressed as

So we have that

substituting values



Answer:
v = 4.10 10⁻³ m / s
Explanation:
For this exercise we will use Newton's second law where the force is magnetic
F -W = m a
As the field is directed to the north and the proton to the east, using the rule of the right hand the force is vertical upwards, the force balances the weight the acceleration is zero
F = W
q v B = m g
Let's calculate the speed
v = m g / (q B)
v = 1,673 10⁻²⁷ 9.8 / (1.6 10⁻¹⁹ 2.5 10⁻⁵)
v = 4.10 10⁻³ m / s
Conservation of momentum requires that the sum of momenta after is equal to that before. Since initially nothing is moving, the sum after the shot will also add to zero.
m₁v₁ = -m₂v₂
Solve for the cannon's velocity v₁
v₁ = -m₂v₂/m₁ = -2.10m/s
The negative sign means it's moving 2.10m/s south.
Answer:
D) The element is most likely from Group 6A or 7A and in period 2 or 3.
Explanation:
Electronegativity of an atom is the tendency of an atom to attract shared paired of electron to itself. Electronegativity increase across the period from left to right.The ability of an atom to attract electron to itself is electronegativity. Group 7A and 6A elements can easily attract atoms to itself so they are highly electronegative. The most electronegative element in the periodic table is fluorine.Group 6A and 7A is likely to have high electronegativity.
Electron affinity of an atom is the amount of energy release when an atom gains electron . Generally, when atom gains electron they become negatively charged. Group 6A and 7A elements have high electron affinity.
Ionization energy is the energy required to remove one or more electron from a neutral atom to form cations. ionization energy of group 7A and 6A are usually high because the energy required to remove these electron is usually very high . The elements in this groups usually gain electron easily so the energy to remove electron is very high.