Answer:
b) Nothing will happen, the sea saw will still be balanced.
Explanation:
b) Nothing will happen, the sea saw will still be balanced.
Reason:-
When two kids are balanced, the sum of torques on the seesaw will be zero.
if each kid, reduces their distances by half, then the torque of each kid will be half and the sum of torque of each on the seesaw will be zero.
Therefore the seesaw is balanced
To solve this problem we will use the concepts related to Torque as a function of the Force in proportion to the radius to which it is applied. In turn, we will use the concepts of energy expressed as Work, and which is described as the Torque's rate of change in proportion to angular displacement:

Where,
F = Force
r = Radius
Replacing we have that,



The moment of inertia is given by 2.5kg of the weight in hand by the distance squared to the joint of the body of 24 cm, therefore


Finally, angular acceleration is a result of the expression of torque by inertia, therefore



PART B)
The work done is equivalent to the torque applied by the distance traveled by 60 °° in radians
, therefore



The answer is A. ive done a 5-k race, so its for sure 3 miles.
<span>CorrectThe direction of the electric field stays the same regardless of the sign of the charges that are free to move in theconductor.Mathematically, you can see that this must be true since the expression you derived for the electric field isindependent of .Physically, this is because the force due to the magnetic field changes sign as well and causes positive charges tomove in the direction (as opposed to pushing negative charges in the direction). Therefore the result isalways the same: positive charges on the side and negative charges on the side. Because the electric fieldgoes from positive to negative charges will always point in the direction (given the original directions of</span>
That is because it is impossible to create a law for the behavior of every single different gas, so creating laws for an ideal gas helps us understand the basic nature of gasses which might or might not differ slightly or a lot. By understanding how an ideal gas works, we can understand how a normal gas works.