Using the discriminant of a quadratic equation, it is found that the quadratic equation would have one repeated solution for m = -3.
<h3>What is the quadratic equation?</h3>
The quadratic equation is given as follows:
mx² + 12x - 12.
<h3>What is the discriminant of a quadratic equation and how does it influence the solutions?</h3>
A quadratic equation is modeled by:

The discriminant is:

The solutions are as follows:
- If
, it has 2 real solutions.
- If
, it has 1 real solutions.
- If
, it has 2 complex solutions.
For this problem, the coefficients are:
a = m, b = 12, c = -12.
Hence the discriminant is:
b² - 4ac = 144 + 48m.
We want it to be of 0, hence:
144 + 48m = 0
m = -144/48
m = -3.
More can be learned about the discriminant of a quadratic equation at brainly.com/question/19776811
#SPJ1
Answer:
AM = 6
Step-by-step explanation:
Using the property of a parallelogram
• The diagonals bisect each other
MO is a diagonal, hence
AM = AO = 6
Answer: 1,-4.5
Explanation: you can find this by finding the difference in y and the difference in x. The difference in x is -6, and the difference in y is +3. All you have to do after that is divide that by 2: -3,1.5, than add that to the first coordinate. That should be the midpoint.