Answer:
Anisotropy, in physics, the quality of exhibiting properties with different values when measured along axes in different directions. Anisotropy is most easily observed in single crystals of solid elements or compounds, in which atoms, ions, or molecules are arranged in regular lattices.
Explanation:
HOPE IT HELPS
Answer:
(a): The car's relative position to the base of the cliff is x= 32.52m.
(b): The lenght of the car in the ir is tfall= 1.78 sec.
Explanation:
Vo= 0
V= ?
d= 50m
h= 30m
a= 4 m/s²
t= √(2*d/a)
t= 5 sec
V= a*t
V= 20 m/s
Vx= V * cos(24º)
Vx= 18.27 m/s
Vy= V* sin(24º)
Vy= 8.13 m/s
h= Vy*t + g*t²/2
clearing t:
tfall= 1.78 sec (b)
x= Vx * tfall
x= 32.52 m (a)
Answer:
10.52 m
Explanation:
The power radiated by a body is given by
P = σεAT⁴ where ε = emissivity = 0.97, T = temperature = 30 C + 273 = 303 K, A = surface area of human body = 1.8 m², σ = 5.67 × 10⁻⁴ W/m²K⁴
P = σεAT⁴ = 5.67 × 10⁻⁸ W/m²K⁴ × 0.97 × 1.8 m² × (303)⁴ = 834.45 W
This is the power radiated by the human body.
The intensity I = P/A where A = 4πr² where r = distance from human body.
I = P/4πr²
r = (√P/πI)/2
If the python is able to detect an intensity of 0.60 W/m², with a power of 834.45 W emitted by the human body, the maximum distance r, is thus
r = (√P/πI)/2 = (√834.45/0.60π)/2 = 21.04/2 = 10.52 m
So, the maximum distance at which a python could detect your presence is 10.52 m.
The power dissipated across a component can be calculated through the formula P=I^2xR
Substituting the values in we get P=(0.5)^2x10=2.5W
-reflection and refraction of light
-dispersion of light
-absorption of light
-polarization of light