Answer:
640 m.
Explanation:
The following data were obtained from the question:
Acceleration (a) = –20 m/s/s
Time (t) = 8 s
Final velocity (v) = 0 m/s
Distance (s) =.?
Next, we shall determine the initial velocity (u) of the car. This can be obtained as follow:
Acceleration (a) = –20 m/s/s
Time (t) = 8 s
Final velocity (v) = 0 m/s
Initial velocity (u)
a = (v – u) / t
–20 = (0 – u) / 8
–20 = – u / 8
Cross multiply
–20 × 8 = – u
– 160 = – u
Divide both side by – 1
u = – 160 / – 1
u = 160 m/s
Finally, we shall determine the distance travelled by the car before stopping as follow:
Time (t) = 8 s
Final velocity (v) = 0 m/s
Initial velocity (u) = 160 m/s
Distance (s) =.?
s = (v + u)t /2
s = (0 + 160) × 8 /2
s = (160 × 8) /2
s = 1280 / 2
s = 640 m
Therefore, the car travelled 640 m before stopping.
The correct answer
to this question would be:
<span><span>
A. </span>
No part of your vehicle will extend out into
the traffic lane.</span>
This kind of maneuver only shows your skill
to handle the vehicle in tight spaces, ability to judge distance, and showing control
of the vehicle as you turn into a straight-in parking space.
<span> </span>
Answer:
White or lighter colored, shirt REFLECTS most of the visible wavelengths or all colors of light while a black or dark shirt ABSORBS more wavelengths.
So, Absorbed radiation is converted into heat, making the darker or black shirt warmer to wear.
<u>-TheUnknownScientist</u><u> 72</u>
Answer: 22.7 meters
Explanation: The distance traveled is how much the ball has rolled in total, this means the lenght of the path that it has followed from begining to end.
Since it first travels 13.2 meters and then 9.5 meters, if we sum this quantities:
13.2 + 9.5 = 22.7 meters
So 22.7 is the distance that the ball has traveled.
Answer:

Explanation:
Consider the axis diagram attached.
Given:
Ey = Ez = 0
Eₓ = - 4x N/C · m
Since electric field is in x direction, potential difference would be:
Here we integrate between limits 0 and 4.40 which is distance between A and B along x-axis.
![V_{b} - V_{a} = -4 \left[\begin{array}{ccc}\frac{x^{2} }{2} \end{array}\right]^{4.40}_{0}](https://tex.z-dn.net/?f=V_%7Bb%7D%20-%20V_%7Ba%7D%20%3D%20-4%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7Bx%5E%7B2%7D%20%7D%7B2%7D%20%5Cend%7Barray%7D%5Cright%5D%5E%7B4.40%7D_%7B0%7D)
