Answer:
4. Becomes softer as temperature rises
Explanation:
An amorphous solid is any noncrystalline solid in which the atoms and molecules are not organized in a definite lattice pattern. Such solids include glass, plastic, and gel. Solids and liquids are both forms of condensed matter; both are composed of atoms in close proximity to each other.
Answer:
The speed of proton when it emerges through the hole in the positive plate is
.
Explanation:
Given that,
A parallel-plate capacitor is held at a potential difference of 250 V.
A A proton is fired toward a small hole in the negative plate with a speed of, 
We need to find the speed when it emerges through the hole in the positive plate. It can be calculated using the conservation of energy as :

So, the speed of proton when it emerges through the hole in the positive plate is
.
Answer:
a) The velocity of rock at 1 second, v = 9.8 m/s
b) The velocity of rock at 3 second, v = 29.4 m/s
c) The velocity of rock at 5.5 second, v = 53.9 m/s
Explanation:
Given data,
The rock is dropped from a bridge.
The initial velocity of the rock, u = 0
a) The velocity of rock at 1 second,
Using the first equation of motion
v = u + gt
v = 0 + 9.8 x 1
v = 9.8 m/s
b) The velocity of rock at 3 second,
v = u + gt
v = 0 + 9.8 x 3
v = 29.4 m/s
c) The velocity of rock at 5.5 second,
v = u + gt
v = 0 + 9.8 x 5.5
v = 53.9 m/s
a = 3.09 m/s²
<h3>Explanation</h3>
This question doesn't tell anything about how long it took for the car to go through 105 meters. As a result, the <em>timeless </em>suvat equation is likely what you need for this question.
In the <em>timeless</em> suvat equation,

where
is the acceleration of the car;
is the <em>final</em> velocity of the car;
is the <em>initial</em> velocity of the car; and
is the displacement of the car.
Note that <em>v</em> and <em>u</em> are velocities. Make sure that you include their signs in the calculation.
In this question,
Apply the <em>timeless</em> suvat equation:
.
The value of
is greater than zero, which is reasonable. Velocity of the car is negative, meaning that the car is moving backward. The car now moves to the back at a slower speed. Effectively it accelerates to the front. Its acceleration shall thus be positive.
Answer:
770m/s
Explanation:
caculation using one of the newton law of motion