1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ipn [44]
4 years ago
8

How do i fix the ads at the bottom of my TCL tv​

Engineering
1 answer:
Nana76 [90]4 years ago
7 0

Answer:

hit the exit button on your remote

Explanation:

You might be interested in
Discuss the applications of numerical weather forecasting​
olchik [2.2K]

Numerical weather prediction (NWP) uses mathematical models of the atmosphere and oceans to predict the weather based on current weather conditions. Though first attempted in the 1920s, it was not until the advent of computer simulation in the 1950s that numerical weather predictions produced realistic results. A number of global and regional forecast models are run in different countries worldwide, using current weather observations relayed from radiosondes, weather satellites and other observing systems as inputs.
3 0
3 years ago
An electric kettle is required to heat 0.64 kg of water from 15.4°C to 98.2°C in six
skelet666 [1.2K]

Answer:

Almost done

Explanation:

I am just finishing up my work

7 0
3 years ago
A large class with 1,000 students took a quiz consisting of ten questions. To get an A, students needed to get 9 or 10 questions
VMariaS [17]

Answer:

a. 0.11

b. 110 students

c. 50 students

d. 0.46

e. 460 students

f. 540 students

g. 0.96

Explanation:

(See attachment below)

a. Probability that a student got an A

To get an A, the student needs to get 9 or 10 questions right.

That means we want P(X≥9);

P(X>9) = P(9)+P(10)

= 0.06+0.05=0.11

b. How many students got an A on the quiz

Total students = 1000

Probability of getting A = 0.11 ---- Calculated from (a)

Number of students = 0.11 * 1000

Number of students = 110 students

So,the number of students that got A is 110

c. How many students did not miss a single question

For a student not to miss a single question, then that student scores a total of 10 out of possible 10

P(10) = 0.05

Total Students = 1000

Number of Students = 0.05 * 1000

Number of Students = 50 students

We see that 5

d. Probability that a student pass the quiz

To pass, a student needed to get at least 6 questions right.

So we want P(X>=6);

P(X>=) =P(6)+P(7)+P(8)+P(9)+P(10)

=0.08+0.12+0.15+0.06+0.05=0.46

So, the probability of a student passing the quiz is 0.46

e. Number of students that pass the quiz

Total students = 1000

Probability of passing the quiz = 0.46 ----- Calculated from (d)

Number of students = 0.46 * 1000

Number of students = 460 students

So,the number of students that passed the test is 460

f. Number of students that failed the quiz

Total students = 1000

Total students that passed = 460 ----- Calculated from (e)

Number of students that failed = 1000 - 460

Number of students that failed = 540

So,the number of students that failed is 540

g. Probability that a student got at least one question right

This means that we want to solve for P(X>=1)

Using the complement rule,

P(X>=1) = 1 - P(X<1)

P(X>=1) = 1 - P(X=0)

P(X>=1) = 1 - 0.04

P(X>=1) = 0.96

7 0
3 years ago
Which of the following ranges depicts the 2% tolerance range to the full 9 digits provided?
Lyrx [107]

Answer:

the only one that meets the requirements is option C .

Explanation:

The tolerance of a quantity is the maximum limit of variation allowed for that quantity.

To find it we must have the value of the magnitude, its closest value is the average value, this value can be given or if it is not known it is calculated with the formula

         x_average = ∑ x_{i} / n

The tolerance or error is the current value over the mean value per 100

         Δx₁ = x₁ / x_average

         tolerance = | 100 -Δx₁  100 |

bars indicate absolute value

let's look for these values ​​for each case

a)

    x_average = (2.1700000+ 2.258571429) / 2

    x_average = 2.2142857145

fluctuation for x₁

        Δx₁ = 2.17000 / 2.2142857145

        Tolerance = 100 - 97.999999991

        Tolerance = 2.000000001%

fluctuation x₂

        Δx₂ = 2.258571429 / 2.2142857145

        Δx2 = 1.02

        tolerance = 100 - 102.000000009

        tolerance 2.000000001%

b)

    x_average = (2.2 + 2.29) / 2

    x_average = 2,245

fluctuation x₁

         Δx₁ = 2.2 / 2.245

         Δx₁ = 0.9799554

         tolerance = 100 - 97,999

         Tolerance = 2.00446%

fluctuation x₂

          Δx₂ = 2.29 / 2.245

          Δx₂ = 1.0200445

          Tolerance = 2.00445%

c)

   x_average = (2.211445 +2.3) / 2

   x_average = 2.2557225

       Δx₁ = 2.211445 / 2.2557225 = 0.9803710

       tolerance = 100 - 98.0371

       tolerance = 1.96%

       Δx₂ = 2.3 / 2.2557225 = 1.024624

       tolerance = 100 -101.962896

       tolerance = 1.96%

d)

   x_average = (2.20144927 + 2.29130435) / 2

   x_average = 2.24637681

       Δx₁ = 2.20144927 / 2.24637681 = 0.98000043

       tolerance = 100 - 98.000043

       tolerance = 2.000002%

       Δx₂ = 2.29130435 / 2.24637681 = 1.0200000017

       tolerance = 2.0000002%

e)

   x_average = (2 +2,3) / 2

   x_average = 2.15

   Δx₁ = 2 / 2.15 = 0.93023

   tolerance = 100 -93.023

   tolerance = 6.98%

   Δx₂ = 2.3 / 2.15 = 1.0698

   tolerance = 6.97%

Let's analyze these results, the result E is clearly not in the requested tolerance range, the other values ​​may be within the desired tolerance range depending on the required precision, for the high precision of this exercise the only one that meets the requirements is option C .

4 0
3 years ago
The proposed grading at a project site will consist of 25,100 m3 of cut and 23,300 m3 of fill and will be a balanced earthwork j
Anna [14]

Answer:

the volume of water that will be required to bring these soils to the optimum moisture content is 1859 kL

Explanation:

Given that;

volume of cut = 25,100 m³

Volume of dry soil fill = 23,300 m³

Weight of the soil will be;

⇒ 93% × 18.3 kN/m³ × 23,300 m³

= 0.93 × 426390 kN 3

= 396,542.7 kN  

Optimum moisture content = 12.9 %

Required amount of moisture = (12.9 - 8.3)% = 4.6 %

So,

Weight of water required = 4.6% × 396,542.7 = 18241 kN

Volume of water required = 18241 / 9.81 = 1859 m³

Volume of water required = 1859 kL

Therefore, the volume of water that will be required to bring these soils to the optimum moisture content is 1859 kL

6 0
3 years ago
Other questions:
  • A brittle intermetallics specimen is tested with a bending test. The specimen's width 0.45 in and thickness 0.20 in. The length
    5·1 answer
  • HELP!
    8·1 answer
  • Two advantages of deforming steel at room temperature rather than at elevated temperatures are: (select 2 answers from the optio
    13·1 answer
  • Water discharging into a 10-m-wide rectangular horizontal channel from a sluice gate is observed to have undergone a hydraulic j
    12·1 answer
  • A preheater involves the use of condensing steam at 100o C on the inside of a bank of tubes to heat air that enters at I atm and
    14·1 answer
  • How can the direction of rotation of a split-phase motor be changed? *
    15·2 answers
  • Technician A says that in a worm gear steering system, most excessive steering free play is usually found in the gearbox. Techni
    13·1 answer
  • Shane's 100-watt radio draws 7 amps of current on a 120-volt circuit. What is the resistance in the radio?
    8·1 answer
  • How does the Ivanpah Solar Plant make electricity?
    12·1 answer
  • Mark each one as either Potential or Kinetic Energy?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!