1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kruka [31]
3 years ago
6

WANT POINTS? JUST ANSWER ME:)

Engineering
2 answers:
bulgar [2K]3 years ago
7 0

Answer:

mcfndvkernfnkvfvjnfdkvfv

Explanation:

Lapatulllka [165]3 years ago
6 0

Answer:

yes why thank you

snarfs :)

You might be interested in
Identify the measurement shown in figure 7 and state in centimeters ​
Sav [38]

Answer:

1.3cm

Explanation:

the arrow is 3 lines past the 1 so it is 1.3cm

6 0
3 years ago
HELP<br><br><br>the overall width of a part is dimensioned as 3.00 ± 0.02. what is the tolerance
MariettaO [177]

Answer:

Not knowing the units the tolerance is 0.02.  I would presume mm but hopefully your question has more detail.  

Explanation:

The tolerance is the portion after the main dimension (+/- 0.02).  In our case we have bilateral tolerance since there is tolerance in both directions (positive and negative).  If you were building a part the acceptable range would be 2.98 to 3.02 based on the tolerance provided.  

3 0
3 years ago
Read 2 more answers
An inductor (L = 400 mH), a capacitor (C = 4.43 µF), and a resistor (R = 500 Ω) are connected in series. A 44.0-Hz AC generator
MakcuM [25]

Answer:

(A) Maximum voltage will be equal to 333.194 volt

(B) Current will be leading by an angle 54.70

Explanation:

We have given maximum current in the circuit i_m=385mA=385\times 10^{-3}A=0.385A

Inductance of the inductor L=400mH=400\times 10^{-3}h=0.4H

Capacitance C=4.43\mu F=4.43\times 10^{-3}F

Frequency is given f = 44 Hz

Resistance R = 500 ohm

Inductive reactance will be x_l=\omega L=2\times 3.14\times 44\times 0.4=110.528ohm

Capacitive reactance will be equal to X_C=\frac{1}{\omega C}=\frac{1}{2\times 3.14\times 44\times 4.43\times 10^{-6}}=816.82ohm

Impedance of the circuit will be Z=\sqrt{R^2+(X_C-X_L)^2}=\sqrt{500^2+(816.92-110.52)^2}=865.44ohm

So maximum voltage will be \Delta V_{max}=0.385\times 865.44=333.194volt

(B) Phase difference will be given as \Phi =tan^{-1}\frac{X_C-X_L}{R}=\frac{816.92-110.52}{500}=54.70

So current will be leading by an angle 54.70

5 0
3 years ago
The following electrical characteristics have been determined for both intrinsic and p-type extrinsic gallium antimonide (GaSb)
xxTIMURxx [149]

Answer:

0.5m^2/Vs and 0.14m^2/Vs

Explanation:

To calculate the mobility of electron and mobility of hole for gallium antimonide we have,

\sigma = n|e|\mu_e+p|e|\mu_h (S)

Where

e= charge of electron

n= number of electrons

p= number of holes

\mu_e= mobility of electron

\mu_h=mobility of holes

\sigma = electrical conductivity

Making the substitution in (S)

Mobility of electron

8.9*10^4=(8.7*10^{23}*(-1.602*10^{-19})*\mu_e)+(8.7*10^{23}*(-1.602*10^{-19})*\mu_h)

0.639=\mu_e+\mu_h

Mobility of hole in (S)

2.3*10^5 = (7.6*10^{22}*(-1.602*10^{-19})*\mu_e)+(1*10^{25}*(-1.602*10^{-19}*\mu_h))

0.1436 = 7.6*10^{-3}\mu_e+\mu_h

Then, solving the equation:

0.639=\mu_e+\mu_h (1)

0.1436 = 7.6*10^{-3}\mu_e+\mu_h (2)

We have,

Mobility of electron \mu_e = 0.5m^2/V.s

Mobility of hole is \mu_h = 0.14m^2/V.s

6 0
3 years ago
A binary geothermal power plant uses geothermal water at 160°C as the heat source. The cycle operates on the simple Rankine cycl
bogdanovich [222]

A binary geothermal power operates on the simple Rankine cycle with isobutane as the working fluid. The isentropic efficiency of the turbine, the net power output, and the thermal efficiency of the cycle are to be determined

Assumptions :

1.  Steady operating conditions exist.

2.  Kinetic and potential energy changes are negligible.

Properties:  The specific heat of geothermal water ( c_{geo}[) is taken to be 4.18 kJ/kg.ºC.  

Analysis (a) We need properties of isobutane, we can obtain the properties from EES.

a. Turbine

PP_{3} = 3.25mPa = (3.25*1000) kPa\\= 3250kPa\\from the EES TABLE\\h_{3} = 761.54 kJ/kg\\s_{3} = 2.5457 kJ/kg\\P_{4} = 410kPa\\\\s_{4} = s_{3} \\h_{4s} = 470.40kJ/kg\\\\T_{4} = 179.5^{0} C\\\\h_{4} = 689.74 kJ/KG\\\\ The  isentropic  efficiency, n_{T} = \frac{h_{3}-h_{4}  }{h_{3}- h_{4s} }

==\frac{761.54-689.74}{761.54-670.40} \\=\frac{71.8}{91.14} \\=0.788

b. Pump

h_{1} = h_{f} @ 410kPa = 273.01kJ/kg\\v_{1} = v_{f} @ 410kPa = 0.001842 m^{3}/kgw_{p,in} =  \frac{v_{1}(P_{2}-P_{1})   }{n_{p} } \\\\= \frac{0.01842(3250-410)}{0.9} \\\\ =5.81kJ/kg\\h_{2} =h_{1} + w_{p,in}\\          = 273.01+5.81\\           = 278.82 kJ/kg\\\\w_{T,out} = m^{.}  (h_{3} -h_{4} )\\=(305.6)(761.54-689.74)\\=305.6(71.8)\\=21,942kW\\\\

W^{.} _ {P,in} = m^{.} (h_{2} -h_{1}) \\=m^{.}  w_{p,in \\=305.6(5.81)\\\\=1,777kW\\W^{.}  _{net} = W^{.} _{T, out} - W^{.}  _{P,in} \\= 21,942-1,777\\=20,166 kW\\\\HEAT EXCHANGER\\\\Q_{in} = m^{.} _{geo} c_{geo} (T_{in-T_{out} } )\\=555.9(4.18)(160-90)\\=162.656kW\\

c. The thermal efficiency of the cycle  n_{th}  =\frac{W^{.} _{net} }{Q^{._{in} } } \\\\= \frac{20,166}{162,656} \\=0.124\\=12.4%

7 0
3 years ago
Read 2 more answers
Other questions:
  • Who knows about welding ??
    7·1 answer
  • The voltage across a device and the current through it are:
    9·2 answers
  • Will this airplane stay in the air a long time? Why or why not?
    9·1 answer
  • Which of the following is not one of the systems required to ensure the safe and correct operation of an engine?
    5·1 answer
  • Let CFG G be the following grammar.
    7·2 answers
  • A strong base (caustic or alkali) is added to oils to test for: b. entrained air a)- alkalinity b)- acidity c)- contamination. d
    11·1 answer
  • Write a Nested While Loop that will increment the '*' from 1 to 10.
    6·1 answer
  • Which symbol should be used for the given scenario?
    11·1 answer
  • 10. True or False? A disruptive technology<br> radically changes the way people live and<br> work.
    5·2 answers
  • 4.6. What is the maximum peak output voltage and current if the supply voltages are changed to +15 V and -15 V.​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!