Answer:
- They are highly reactive metals
- They have low electro negativity
- They have low ionization energy
- They don't exist alone in nature
- They have low densities
Explanation:
Alkali metals are the elements in group 1 of the periodic table. They include Sodium, Lithium, Potassium e.t.c.
Due to the fact they have one atom in their outermost shell, they are very unstable because they easily react with other elements and are therefore don't exist alone in nature but combined with other elements for this same reason.
Since alkali metals don't easily attract other elements due to it's lone pair in the outer most shell, it can be said to have low electro negativity.
Also, they don't need energy to discharge their electrons since they are highly reactive due to their lone pair in the outermost shell and so we say they have low ionization energy.
Due to this reason, they also have low densities.
Answer:
The range of [H⁺] is from 2.51 x 10⁻⁶ M to 6.31 x 10⁻⁶ M,
Explanation:
To answer this problem we need to keep in mind the <u>definition of pH</u>:
So now we <u>calculate [H⁺] using a pH value of 5.2 and of 5.6</u>:
-5.2 = log [H⁺]
= [H⁺]
6.31 x 10⁻⁶ M = [H⁺]
-5.6 = log [H⁺]
= [H⁺]
2.51 x 10⁻⁶ M = [H⁺]
Answer:
1. The oxidation half-reaction is: Mn(s) ⇄ Mn²⁺(aq) + 2e⁻
2. The reduction half-reaction is: Ag⁺(aq) + 1e⁻ ⇄ Ag(s)
Explanation:
Main reaction: 2Ag⁺(aq) + Mn(s) ⇄ 2Ag(s) + Mn²⁺(aq)
In the oxidation half reaction, the oxidation number increases:
Mn changes from 0, in the ground state to Mn²⁺.
The reduction half reaction occurs where the element decrease the oxidation number, because it is gaining electrons.
Silver changes from Ag⁺ to Ag.
1. The oxidation half-reaction is: Mn(s) ⇄ Mn²⁺(aq) + 2e⁻
2. The reduction half-reaction is: Ag⁺(aq) + 1e⁻ ⇄ Ag(s)
To balance the hole reaction, we need to multiply by 2, the second half reaction:
Mn(s) ⇄ Mn²⁺(aq) + 2e⁻
(Ag⁺(aq) + 1e⁻ ⇄ Ag(s)) . 2
2Ag⁺(aq) + 2e⁻ ⇄ 2Ag(s)
Now we sum, and we can cancel the electrons:
2Ag⁺(aq) + Mn(s) + 2e⁻ ⇄ 2Ag(s) + Mn²⁺(aq) + 2e⁻
Answer:
4.1 moles of FeCl₃
Explanation:
The reaction expression is given as shown below:
2Fe + 3Cl₂ → 2FeCl₃
Number of moles of Cl₂ = 6.1moles
So;
We know that from the balanced reaction expression:
3 moles of Cl₂ will produce 2 moles of FeCl₃
Therefore 6.1moles of Cl₂ will produce
= 4.1 moles of FeCl₃
The number of moles is 4.1 moles of FeCl₃
Answer:
compound
Explanation:
A molecule is the smallest particle in a chemical element or compound that has the chemical properties of that element or compound. Molecules are made up of atoms that are held together by chemical bonds. These bonds form as a result of the sharing or exchange of electrons among atoms.