Answer:
bro i think ur from the uni of arid agriculture rawalpindi and today is your networking paper
Explanation:
Answer:
0-4 acceleration comes at 12 m/s where (B) stagnates at 12 m/s and remains for 4 seconds (C) is breaks being activated slowing the car to 6 m/s in 2 seconds and (D) over the course of 4 seconds brings the car to 10 m/s.
Explanation:
Here light ray strikes to interface at an angle of 45 degree and then refracts into other medium such that it will bend towards boundary.
So here the angle of incidence will be less than the angle of refraction as light moves towards the boundary after refraction which mean it will bend away from the normal
here it can be said that medium 2 will be rarer then medium 1
So here the possible options are
1. Water
Air
2. Diamond
Air
So in above two options medium 1 is denser and medium 2 is rarer
Consider the upward direction of motion as positive and downward direction of motion as negative.
a = acceleration due to gravity in downward direction = - 9.8 
v₀ = initial velocity of rock in upward direction = ?
v = final velocity of rock at the highest point = 0 
t = time to reach the maximum height = 4.2 sec
Using the kinematics equation
v = v₀ + a t
inserting the values
0 = v₀ + (- 9.8) (4.2)
v₀ = 41.2 
Answer:
its speed when its height was half that of its starting point is 25.46 m/s
Explanation:
Given;
final speed of the roller coaster, v = 36 m/s
Applying general equation of motion;
V² = U² + 2gh
where;
V is the final speed of the roller coaster
U is the initial speed of the roller coaster = 0
h is the height attained at a given velocity
36² = 0 + (2 x 9.8)h
1296 = 19.6 h
h = 1296/19.6
h = 66.1224 m
when its height was half that of its starting point, h₂ = ¹/₂ h
h₂ = ¹/₂(66.1224 m) = 33.061 m
At h = 33.061 m, V = ?
V² = U² + 2gh
V² = 0 + 2 x 9.8 x 33.061
V² = 648
V = √648
V = 25.46 m/s
Therefore, its speed when its height was half that of its starting point is 25.46 m/s