Answer:
82.7 m
Explanation:
u= 22m/s
a= 2.4 m/s^2.
t= 3.2 secs
Therefore the distance travelled can be calculated as follows
S= ut + 1/2at^2
= 22 × 3.2 + 1/2 × 2.4 × 3.2^2
= 70.4 + 1/2×24.58
= 70.4 + 12.29
= 82.7 m
Hence the distance travelled by the truck is 82.7 m
Answer: Mid-ocean ridges are geologically important because they occur along the kind of plate boundary where new ocean floor is created as the plates spread apart. Thus the mid-ocean ridge is also known as a "spreading center" or a "divergent plate boundary." The plates spread apart at rates of 1 cm to 20 cm per year.
Answer:

Explanation:
<u>Motion with Constant Acceleration</u>
A body moves with constant acceleration when the speed changes uniformly in time. The equation used to find the final speed vf is

Where vo is the initial speed, a is the acceleration, and t is the time.
The cyclist has an initial speed of vo=10 miles/hour and ends up at vf=20 miles/hour in t=5 seconds.
Both speeds are given in miles/hour and we must convert it to m/s:
1 mile/hour = 0.44704 m/s
10 mile/hour = 4.47 m/s
20 mile/hour = 8.94 m/s
The acceleration is calculated by solving for a:



Jumping on a trampoline is a classic example of conservation of energy, from potential into kinetic. It also shows Hooke's laws and the spring constant. Furthermore, it verifies and illustrates each of Newton's three laws of motion.
<u>Explanation</u>
When we jump on a trampoline, our body has kinetic energy that changes over time. Our kinetic energy is greatest, just before we hit the trampoline on the way down and when you leave the trampoline surface on the way up. Our kinetic energy is 0 when you reach the height of your jump and begin to descend and when are on the trampoline, about to propel upwards.
Potential energy changes along with kinetic energy. At any time, your total energy is equal to your potential energy plus your kinetic energy. As we go up, the kinetic energy converts into potential energy.
Hooke's law is another form of potential energy. Just as the trampoline is about to propel us up, your kinetic energy is 0 but your potential energy is maximized, even though we are at a minimum height. This is because our potential energy is related to the spring constant and Hooke's Law.