It's just asking you to sit down and COUNT the little squares in each sector.
It'll help you keep everything straight if you take a very sharp pencil and make a tiny dot in each square as you count it. That way, you'll be able to see which ones you haven't counted yet, and also you won't count a square twice when you see that it already has a dot in it.
(If, by some chance, this is a picture of the orbit of a planet revolving around the sun ... as I think it might be ... then you should find that both sectors jhave the same number of squares.)
Answer:
-0.912 m/s
Explanation:
When the package is thrown out, momentum is conserved. The total momentum after is the same as the total momentum before, which is 0, since the boat was initially at rest.

where
are the mass of the child, the boat and the package, respectively.
are the velocity of the package and the boat after throwing.



Answer:

Explanation:
Change in velocity considering the x component will be
Final velocity-Initial velocity

Change in velocity considering the y component will be
Final velocity-Initial velocity

Resultant change in velocity
Acceleration= change in velocity per unit time hence

Answer:
we assume that it starts with a velocity of 10m/s. At 2m height above ground level, its velocity decreases at 3m above ground level
for its way down the velocity at 3m on its way down is more than its velocity at 2m on its way down.
Explanation:
A student throws a small rock straight upwards. The rock rises to its highest point and then falls back down. How does the speed of the rock at 2m on the way down compare with its speed at 2m on the way up?
It decreases in speed on its way down and increases in speed on its way down.
it decreases in speed on its way up because the the vertical motion is against the earths gravitational pull on an object to the earth's center
.It increases in speed on his way down because its under the influence of gravity
from newton's equation of motion we can check by
using V^2=u^2+2as
we assume that it starts with a velocity of 10m/s. At 2m height above ground level, its velocity decreases at 3m above ground level
for its way down the velocity at 3m on its way down is more than its velocity at 2m on its way down.
Answer:
the answer is
Explanation:For equilibrium
Weight = Tension
mg=T
∴T=4×3.1π=12.4πN (as can be inferred from the question)
Y=
△l/l
T/A
=
1000
0.031
/20
12.4π/π(
1000
2
)
2
=
4×0.031
12.4×20×1000×(1000)
2
=2×10
12
N/m
2