The heat released by the water when it cools down by a temperature difference AT
is Q = mC,AT
where
m=432 g is the mass of the water
C, = 4.18J/gºC
is the specific heat capacity of water
AT = 71°C -18°C = 530
is the decrease of temperature of the water
Plugging the numbers into the equation, we find
Q = (4329)(4.18J/9°C)(53°C) = 9.57. 104J
and this is the amount of heat released by the water.
Answer:
750mmHg
Explanation:
The following data were obtained from the question:
T1 = 127°C = 127 +273 = 400K
T2 = 27°C = 27 +273 = 300K
P1 = 1000mmHg
P2 =?
P1/T1 = P2/T2
1000/400 = P2 /300
Cross multiply
400 x P2 = 1000 x 300
Divide both side by 400
P2 = (1000 x 300)/400
P2 = 750mmHg
Therefore, the new pressure after cooling is 750mmHg
Explanation:
n=given mass ÷molar mass
make given mass become the subject of the formula by
multiplying the molar mass on both sides of the equation.
n=0.473mol
given mass=??
molar mass=48
therefore,given mass=n×molar mass
=0.473×48
=22.704grams
mass in grams is 22.704grams
The m/z and relative abundance of the ions contributed to the peak at 21.876 min. The relative abundance will be 21.876%.
<h3>
What is relative abundance?</h3>
- The proportion of atoms with a particular atomic mass present in an element sample taken from a naturally occurring sample is known as the relative abundance of an isotope.
- When the relative abundances of an element's isotopes are multiplied by their atomic masses and the results are added up, the result is the element's average atomic mass, which is a weighted average.
- Chemists often divide the number of atoms in a particular isotope by the sum of the atoms in all the isotopes of that element, then multiply the result by 100 to determine the percent abundance of each isotope in a sample of that element.
To learn more about relative abundance with the given link
brainly.com/question/1594226
#SPJ4
Answer : The percentage composition of carbon, hydrogen and sulfur in a compound is, 38.8 %, 9.6 % and 51.6 % respectively.
Explanation :
To calculate the percentage composition of element in sample, we use the equation:
Given:
Mass of carbon = 1.94 g
Mass of hydrogen = 0.48 g
Mass of sulfur = 2.58 g
First we have to calculate the mass of sample.
Mass of sample = Mass of carbon + Mass of hydrogen + Mass of sulfur
Mass of sample = 1.94 + 0.48 + 2.58 = 5.0 g
Now we have to calculate the percentage composition of a compound.
Hence, the percentage composition of carbon, hydrogen and sulfur in a compound is, 38.8 %, 9.6 % and 51.6 % respectively.