Answer:
The molar concentration of this solution is 0.0463 mol/L
Explanation:
Step 1 : Data given
Mass of a nonelectrolyte solute = 2.69 grams
Volume of water = 345 mL = 0.345 L
Temperature = 26.0°CC = 273 + 26 = 299 K
The osmotic pressure = 863 torr
⇒ 863torr /760 = 1.13553 atm
Step 2: Calculate the molar concentration of this solution
Π = i*M*R*T
⇒with Π = the osmotic pressure = 1.13553 atm
⇒with i = the van't Hoff factor of the nonelectrolyte solute = 1
⇒with M = the molar concentration = TO BE DETERMINED
⇒with R = the gas constant = 0.08206 L*atm/mol*K
⇒with T = the temperature = 299 K
1.13553 atm = 1 * M * 0.08206 L*atm/mol*K * 299 K
M = 1.13553 / (0.08206*299)
M = 0.0463 mol/L
The molar concentration of this solution is 0.0463 mol/L
Answer:
CO is considered as a product.
Explanation:
A general chemical equation for a combination reaction follows:
To write a chemical equation, we must follow some of the rules:
The reactants must be written on the left side of the direction arrow.
A '+' sign is written between the reactants, when more than one reactants are present.
An arrow is added after all the reactants are written in the direction where reaction is taking place. Here, the reaction is taking place in forward direction.
The products must be written on the right side of the direction arrow.
A '+' sign is written between the products, when more than one products are present.
For the given chemical equation:
are the reactants in the reaction and are the products in the reaction.
Hence, CO is considered as a product.
<u>Answer</u>:
By tracking oxidation numbers we can identify the number electron in the atom
<u>Explanation</u>:
Tracking of electrons helps us to know when and how many electrons get transferred from one atom to other atom . Oxidation referred as the “loss of one or more electrons” by an atom. When the oxidation number of an element increases, there is a loss of electrons and that element is being oxidized. Oxidation numbers are usually written with the sign (+plus or −minus) followed by the magnitude, which is the opposite of charges on ions. In their elemental stage oxidation number of an atom is zero.