OMG THERE'S SPIDER BEHIND YOU!!! jk XD lets get back to the question.....
example of omnivores would be us humans but since you said ANIMALS then :
BEARS - bears are omnivores they feed on meat like fish and plants like grass or dandelion.
RACCOONS - their omnivores too they feed on meat like rats (ew), fish, frogs..etc they also eat plants like any kind fruit, grains, nuts ( i dont think all kind tho).
so yup those are two examples :D
Answer:
d. Because those chemicals are easily made when CO2 reacts with water, forming H2CO3 (via carbonic anhydrase
Answer:
The 1st and 4th options are correct
I.the oxidized form has a higher affinity for electrons
IV. the greater the tendency for the oxidized form to accept electrons
Explanation:
Half reaction can be described as the oxidation or reduction reaction in a redox reaction.it is In the redox rection there is a change in the oxidation states of Chemical species involved. the oxidized form in the redox has a higher affinity for electrons and the greater the tendency for the oxidized form to accept electrons.
Standard reduction potential which is also referred to as standard cell potential can be described as the potential difference that exist between cathode and anode of the cell. In the standard reduction potential most times the species will be reduced which is usually analysed in a reduction half reaction.
(Standard Hydrogen Electrode) is utilized when determining the Standard reduction or potentials of a chemical specie. this is because of Hydrogen having zero reduction and oxidation potentials, as a result of this a measured potential of any species is compared with that of Hydrogen, the difference helps to know the potential reduction of that particular specie.
<u>61.25 grams</u> of CO can be formed from 35 grams of oxygen.
The molecular mass of oxygen is <u>16 gmol⁻¹</u>
The molecular mass of carbon monoxide is<u> 28 gmol⁻¹</u>
Explanation:
The molar mass of carbon monoxide is molar mass of C added to that of O;
12 + 16 = 28
= 28g/mol
The molar mass of oxygen is 16 g/mol while that of oxygen gas (O₂) is 32 g/mol
Since the ration oxygen to carbon monoxide is 1: 2 moles, we begin to find out how many moles of carbon monoxide are formed by 35 g of oxygen;
35/32 * 2
= 70/32 moles
Then multiply by the molar mass of carbon monoxide;
70/32 * 28
= 61.25 g