The kinda of energy the involves the flow of positive charge is Electrical
Answer:
Pumice is a light colored, porous igneous rock. It forms during volcanic eruption occurring under water. It is an aggregate of concrete. Because of their porous nature they float over the surface of water. With time the pumice rocks undergoes with several changes including weathering, erosion, and transportation. The extent of heat and pressure, making the sediments of the pumice rocks into metamorphic rocks distinct in the chemical and physical composition of the parent material.
Answer:
See Explanation
Explanation:
Let us consider the first two reactions, the initial concentration of CO was held constant and the concentration of Hbn was doubled.
2.68 * 10^-3/1.34 * 10^-3 = 6.24 * 10^-4/3.12 * 10^-4
2^1 = 2^1
The rate of reaction is first order with respect to Hbn
Let us consider the third and fourth reactions. The concentration of Hbn is held constant and that of CO was tripled.
1.5 * 10^-3/5 * 10^-4 = 1.872 * 10^-3/6.24 * 10^-4
3^1 = 3^1
The reaction is also first order with respect to CO
b) The overall order of reaction is 1 + 1=2
c) The rate equation is;
Rate = k [CO] [Hbn]
d) 3.12 * 10^-4 = k [5 * 10^-4] [1.34 * 10^-3]
k = 3.12 * 10^-4 /[5 * 10^-4] [1.34 * 10^-3]
k = 3.12 * 10^-4/6.7 * 10^-7
k = 4.7 * 10^2 mmol-1 L s-1
e) The reaction occurs in one step because;
1) The rate law agrees with the experimental data.
2) The sum of the order of reaction of each specie in the rate law gives the overall order of reaction.
Answer:
3,855.532 grams
Explanation:
1 pound = 453.592 grams
8.50 = ? grams
--> 8.50 * 453.592 = 3,855.532 grams.
Answer:
Cathode: Ag
Anode: Br₂
Explanation:
In the cathode must occur a reduction, so it's more likely to a metal atom be in the cathode. For the metals given the reduction reactions and the potential of reduction are:
Ag⁺ + e⁻ ⇒ Ag⁰ E° = + 0.80 V
Fe⁺² + 2e⁻ ⇒ Fe⁰ E° = - 0.44 V
Al⁺³ + 3e⁻ ⇒ Al⁰ E° = -1.66 V
As the potential for Ag is the higher, the reduction will occur for it first, so in the cathode will produce Ag.
For the anode an oxidation must occurs, so the reactions for the nonmetals are:
F₂ + 2e⁻ ⇒ 2F⁻ E° = +2.87 V
Cl₂ + 2e⁻ ⇒ 2Cl⁻ E° = +1.36 V
Br₂ + 2e⁻ ⇒ 2Br⁻ E° = +1.07 V
For oxidation, the less the E°, the faster the reaction will occur, so Br₂ will be formed in the anode.