Answer:
option (b)
Explanation:
mass of proton, mp = m
mass of deuteron, md = 2m
charge on proton, qp = q
charge on deuteron, qd = q
The magnetic force on the charged particle when it is moving is given by
F = q v B Sinθ
where, θ is the angle between the velocity and magnetic field.
Here, θ = 90°
Let v is the velocity of both the particle when they enters in the magnetic field.
The force on proton is given by
Fp = q x v x B ...... (1)
The force on deuteron is
Fd = q x v x B .... (2)
Divide equation (1) by equation (2)
Fp / Fd = 1
Thus, the ratio of force on proton to the force on deuteron is 1 : 1.
Thus, option (b) is correct.
The first shell has 2 in and the second shell has 8 in therefore ypuvwont need to add anymore :-) so the answer is 0
So, based on the angle values that have been found, the angle of elevation of the nozzle can be <u>16° or 74°</u>.
<h3>Introduction</h3>
Hi ! This question can be solved using the principle of parabolic motion. Remember ! When the object is moving parabolic, the object has two points, namely the highest point (where the resultant velocity is 0 m/s in a very short time) and the farthest point (has the resultant velocity equal to the initial velocity). At the farthest distance, the object will move with the following equation :

With the following condition :
= the farthest distance of the parabolic movement (m)
= initial speed (m/s)
= elevation angle (°)- g = acceleration due to gravity (m/s²)
<h3>Problem Solving :</h3>
We know that :
= the farthest distance of the parabolic movement = 2.5 m
= initial speed = 6.8 m/s- g = acceleration due to gravity = 9.8 m/s²
<h3>What was asked :</h3>
= elevation angle = ... °
Step by Step :
- Find the equation value
(elevation angle)








- Find the angle value of the equation by using trigonometric equations. Provided that the parabolic motion has an angle of elevation 0° ≤ x ≤ 90°.
First Probability


→
(T)
→
(F)
Second Probability



→
(T)
→
(F)
<h3>Conclusion</h3>
So, based on the angle values that have been found, the angle of elevation of the nozzle can be 16° or 74°.
Answer:
The frequencies are 
Explanation:
From the question we are told that
The speed of the wave is 
The length of vibrating clothesline is 
Generally the fundamental frequency is mathematically represented as

=> 
=> 
Now this other frequencies of vibration experience by the clotheslines are know as harmonics and they are obtained by integer multiple of the fundamental frequency
So
The frequencies are mathematically represented as

=> 
Where n = 1, 2, 3 ....
Answer:
Carbon is found in the atmosphere mostly as carbon dioxide.
Explanation: