Considering the deuterium-tritium fusion reaction with the tritium nucleus at rest: ¹₂H + ¹₃H → ²₄He + ⁰₁n the electric potential energy (in electron volts) at this distance is 17.58MeV
<h3>How is the electric potential energy of deuterium-tritium fusion reaction calculated?</h3>
The reaction is ¹₂H + 1₃H → ²₄He + ⁰₁n
Value of Q = (Mass of ¹₂H + Mass of ¹₃H - Mass of ²₄He- Mass of n) x 931 MeV
Mass of ¹₂H = 2.014102
Mass of ¹₃H = 3.016049
Mass of ²₄He = 4.002603
Mass of n = 1.00867
Therefore Value of Q = [2.014102+3.016049−4.002603−1.00867] × 931 MeV
Therefore Value of Q = 0.01887 × 931 MeV
= 17.58MeV
To learn more about deuterium-tritium fusion reaction, refer
brainly.com/question/9054784
#SPJ4
Answer:
elastic potential energy
You input potential (stored) energy into the rubber band system when you stretched the rubber band back. Because it is an elastic system, this kind of potential energy is specifically called elastic potential energy.
Explanation:
Answer:
The period of rotation is
T=8.025s
Explanation:
The person is undergoing simple harmonic motion on the wheel
Given data
mass of the person =75kg
Radius of wheel r=16m
Velocity =8.25m/s
The oscillating period of simple harmonic motion is given as
T=(2*pi)/2=2*pi √r/g
Assuming that g=9.81m/s
Substituting our data into the expression we have
T=2*3.142 √ 16/9.81
T=6.284*1.277
T=8.025s
Answer:
3000N
Explanation:
divided to get answer
the force needed to accelerate the 1000kg car by 3m/s2 is 3000N
<span>First we can find the circumference of the whole circle with a radius of 5 feet.
circumference = 2 pi radius
circumference = (2 pi) (5 feet)
circumference = (10 pi) feet
From one high point to the other high point, the string moves through an angle of 10 degrees. Since a full circle is 360 degrees, this angle is 1/36 of a full circle.
Therefore, the arc length is 1/36 of the whole circumference.
arc length = (1/36) (circumference)
arc length = (1/36) (10 pi) feet
arc length = 0.873 feet</span>