This passage is about how people research food, how much calories, much much energy you get from it, etc. It also explains the different kinds of food get a certain amount of calories. Some calories burn quicker than the other.
Answer: because ν = velocity/λ where ν and λ are the frequency and wavelegth of the wave.
Explanation: In order to explain this problem we have to consider the relationship between frequency and wavelengths which are related by the velocity of the wave as follows ν*λ=v where ν and λ are the frequency and wavelegth of the wave. These parameters have an inverse proportionality.
Then, ν = velocity/λ
<span>Slow-moving vehicles are prohibited from traveling on expressways or on roadways with a minimum posted speed limit greater than 40mph, and should use the right lane of travel on divided highways.
As slow moving vehicles should use the right lane, fast moving vehicles should use the left lane.
Before start driving, we should learn all the guidelines and rules for this, to avoid any type of inconvenience.</span>
Answer:
205 V
V
= 2.05 V
Explanation:
L = Inductance in Henries, (H) = 0.500 H
resistor is of 93 Ω so R = 93 Ω
The voltage across the inductor is

w = 500 rad/s
IwL = 11.0 V
Current:
I = 11.0 V / wL
= 11.0 V / 500 rad/s (0.500 H)
= 11.0 / 250
I = 0.044 A
Now
V
= IR
= (0.044 A) (93 Ω)
V
= 4.092 V
Deriving formula for voltage across the resistor
The derivative of sin is cos
V
= V
cos (wt)
Putting V
= 4.092 V and w = 500 rad/s
V
= V
cos (wt)
= (4.092 V) (cos(500 rad/s )t)
So the voltage across the resistor at 2.09 x 10-3 s is which means
t = 2.09 x 10⁻³
V
= (4.092 V) (cos (500 rads/s)(2.09 x 10⁻³s))
= (4.092 V) (cos (500 rads/s)(0.00209))
= (4.092 V) (cos(1.045))
= (4.092 V)(0.501902)
= 2.053783
V
= 2.05 V