Answer:
dt/dx = -0.373702
dt/dy = -1.121107
Explanation:
Given data
T(x, y) = 54/(7 + x² + y²)
to find out
rate of change of temperature with respect to distance
solution
we know function
T(x, y) = 54 /( 7 + x² + y²)
so derivative it x and y direction i.e
dt/dx = -54× 2x / (7 +x² + y²)² .........................1
dt/dy = -54× 2y / (7 + x² + y²)² .........................2
now put the value point (1,3) as x = 1 and y = 3 in equation 1 and 2
dt/dx = -54× 2(1) / (7 +(1)² + (3)²)²
dt/dx = -0.373702
and
dt/dy = -54× 2(3) / (7 + (1)² + (3)²)²
dt/dy = -1.121107
To solve the exercise it is necessary to keep in mind the concepts about the ideal gas equation and the volume in the cube.
However, for this case the Boyle equation will not be used, but the one that corresponds to the Boltzmann equation for ideal gas, in this way it is understood that

Where,
N = Number of molecules
k = Boltzmann constant
V = Volume
T = Temperature
P = Pressure
Our values are given as,




Rearrange the equation to find V we have,



We know that length of a cube is given by

Therefore the Length would be given as,



Therefore each length of the cube is 3.44nm
700 makes the maximum output power.
<u>Explanation:</u>
In physics, power is the rate of doing work or of transferring heat, i.e. the amount of energy transferred or converted per unit time. The output power of a motor is the product of the torque that the motor generates and the angular velocity of its output shaft.
A joule is equal to one Newton-meter, which is the amount of work needed to move a 1 Newton force a distance of 1 meter. When you divide work by time, you get power, measured in units of joules per second. This is also called a Watt. 1 Watt = 1 Joule Sec. This is the formula to calculate output power.
Answer: 
Explanation:
Given
Length of beam 
mass of beam 
Two forces of equal intensity acted in the opposite direction, therefore, they create a torque of magnitude

Also, the beam starts rotating about its center
So, the moment of inertia of the beam is

Torque is the product of moment of inertia and angular acceleration

For the first question, you got them right, for the two you left blank, initial(beginning) velocity: 2 m/s the final velocity is: 12 m/s