Here We can use principle of angular momentum conservation
Here as we know boy + projected mass system has no external torque
Since there is no torque so we can say the angular momentum is conserved
now we know that
m = 2 kg
v = 2.5 m/s
L = 0.35 m
I = 4.5 kg-m^2
now plug in all values in above equation
so the final angular speed will be 0.37 rad/s
Answer:
The gravitational force between m₁ and m₂, is approximately 1.06789 × 10⁻⁶ N
Explanation:
The details of the given masses having gravitational attractive force between them are;
m₁ = 20 kg, r₁ = 10 cm = 0.1 m, m₂ = 50 kg, and r₂ = 15 cm = 0.15 m
The gravitational force between m₁ and m₂ is given by Newton's Law of gravitation as follows;
Where;
F = The gravitational force between m₁ and m₂
G = The universal gravitational constant = 6.67430 × 10⁻¹¹ N·m²/kg²
r₂ = 0.1 m + 0.15 m = 0.25 m
Therefore, we have;
The gravitational force between m₁ and m₂, F ≈ 1.06789 × 10⁻⁶ N
Refer to the diagram shown below.
The hoist is in static equilibrium supported by tensions in the two ropes.
For horizontal force balance, obtain
T₃ cos 50 = T₂ cos 38
0.6428T₃ = 0.788T₂
T₃ = 1.2259T₂ (1)
For vertical force balance, obtain
T₂ sin 38 + T₃ sin 50 = 350
0.6157T₂ + 0.766T₃ = 350 (2)
Substitute (1) into (2).
0.6157T₂ + 0.766(1.2259T₂) = 350
1.5547T₂ = 350
T₂ = 225.124 N
T₃ = 1.2259(225.124) = 275.979
Answer:
T₂ = 225.12 N
T₃ = 275.98 N
Answer:
Burning. When you burn something, it turns into ash you can't make that thing turn into what it was before.
Your gas mileage would be 22.93 miles per gallon.