1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Trava [24]
3 years ago
13

Immediately after being struck by a hammer, the nail (mass of 50 g) has a velocity of 50 m/s. The total frictional force is 62.5

kM. How far does the nail move before it comes to a stop
Physics
1 answer:
Marina86 [1]3 years ago
8 0

Answer:

nail will stop after traveling 1000 m    

Explanation:

We have given mass m = 50 gram = 0.05 kg

Frictional force which is used to stop the mass F = 62.5 kN

Initial velocity is given u = 50 m/sec

From newton's law force is equal to F = ma, here m is mass and a is acceleration

So a=\frac{F}{m}=\frac{62.5\times 10^3}{0.05}=1.25\times 10^6m/sec^2

As finally nail stops so final velocity v = 0 m/sec

From third equation of motion v^2=u^2+2as

So 0^2=50^2-2\times 1.25\times 10^6\times s

s = 1000 m

So nail will stop after traveling 1000 m

You might be interested in
What is the difference between mass and weight?
Arturiano [62]

Answer:

mass: it is scalar quantity.

weight:it is a vector quantity.

3 0
3 years ago
From the mass spectrum of the compound, the molecule was determined to have a molar mass of 907 g/mol. what is its molecular for
Molodets [167]
Please elaborate more on your question so I can help you
3 0
3 years ago
What is a prediction
faust18 [17]
An educated guess about something. (What might happen in the future)
7 0
3 years ago
Read 2 more answers
What's the definition energy?​
Anit [1.1K]
Energy is the quantitative property that must be transferred to an object in order to perform work on, or to heat, the object.
4 0
3 years ago
An infinite line of charge with linear density λ1 = 8.2 μC/m is positioned along the axis of a thick insulating shell of inner r
bixtya [17]

1) Linear charge density of the shell:  -2.6\mu C/m

2)  x-component of the electric field at r = 8.7 cm: 1.16\cdot 10^6 N/C outward

3)  y-component of the electric field at r =8.7 cm: 0

4)  x-component of the electric field at r = 1.15 cm: 1.28\cdot 10^7 N/C outward

5) y-component of the electric field at r = 1.15 cm: 0

Explanation:

1)

The linear charge density of the cylindrical insulating shell can be found  by using

\lambda_2 = \rho A

where

\rho = -567\mu C/m^3 is charge volumetric density

A is the area of the cylindrical shell, which can be written as

A=\pi(b^2-a^2)

where

b=4.7 cm=0.047 m is the outer radius

a=2.7 cm=0.027 m is the inner radius

Therefore, we have :

\lambda_2=\rho \pi (b^2-a^2)=(-567)\pi(0.047^2-0.027^2)=-2.6\mu C/m

 

2)

Here we want to find the x-component of the electric field at a point at a distance of 8.7 cm from the central axis.

The electric field outside the shell is the superposition of the fields produced by the line of charge and the field produced by the shell:

E=E_1+E_2

where:

E_1=\frac{\lambda_1}{2\pi r \epsilon_0}

where

\lambda_1=8.2\mu C/m = 8.2\cdot 10^{-6} C/m is the linear charge density of the wire

r = 8.7 cm = 0.087 m is the distance from the axis

And this field points radially outward, since the charge is positive .

And

E_2=\frac{\lambda_2}{2\pi r \epsilon_0}

where

\lambda_2=-2.6\mu C/m = -2.6\cdot 10^{-6} C/m

And this field points radially inward, because the charge is negative.

Therefore, the net field is

E=\frac{\lambda_1}{2\pi \epsilon_0 r}+\frac{\lambda_2}{2\pi \epsilon_0r}=\frac{1}{2\pi \epsilon_0 r}(\lambda_1 - \lambda_2)=\frac{1}{2\pi (8.85\cdot 10^{-12})(0.087)}(8.2\cdot 10^{-6}-2.6\cdot 10^{-6})=1.16\cdot 10^6 N/C

in the outward direction.

3)

To find the net electric field along the y-direction, we have to sum the y-component of the electric field of the wire and of the shell.

However, we notice that since the wire is infinite, for the element of electric field dE_y produced by a certain amount of charge dq along the wire there exist always another piece of charge dq on the opposite side of the wire that produce an element of electric field -dE_y, equal and opposite to dE_y.

Therefore, this means that the net field produced by the wire along the y-direction is zero at any point.

We can apply the same argument to the cylindrical shell (which is also infinite), and therefore we find that also the field generated by the cylindrical shell has no component along the y-direction. Therefore,

E_y=0

4)

Here we want to find the x-component of the electric field at a point at

r = 1.15 cm

from the central axis.

We notice that in this case, the cylindrical shell does not contribute to the electric field at r = 1.15 cm, because the inner radius of the shell is at 2.7 cm from the axis.

Therefore, the electric field at r = 1.15 cm is only given by the electric field produced by the infinite wire:

E=\frac{\lambda_1}{2\pi \epsilon_0 r}

where:

\lambda_1=8.2\mu C/m = 8.2\cdot 10^{-6} C/m is the linear charge density of the wire

r = 1.15 cm = 0.0115 m is the distance from the axis

This field points radially outward, since the charge is positive . Therefore,

E=\frac{8.2\cdot 10^{-6}}{2\pi (8.85\cdot 10^{-12})(0.0115)}=1.28\cdot 10^7 N/C

5)

For this last part we can use the same argument used in part 4): since the wire is infinite, for the element of electric field dE_y produced by a certain amount of charge dq along the wire there exist always another piece of charge dq on the opposite side of the wire that produce an element of electric field -dE_y, equal and opposite to dE_y.

Therefore, the y-component of the electric field is zero.

Learn more about electric field:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

4 0
3 years ago
Other questions:
  • A runner runs 10 miles in 1 hour. how far could they run in 2 hours in m/s?
    12·1 answer
  • What is the average power output (in W) of a heart defibrillator that dissipates 435 J of energy in 10.5 ms?
    5·1 answer
  • Consider the previous situation. Under what condition would the acceleration of the center of mass be zero? Keep in mind that F1
    10·1 answer
  • A garden hose with a diameter of 0.64 in has water flowing in it with a speed of 0.46 m/s and a pressure of 1.9 atmospheres. At
    12·1 answer
  • A high-speed K0 meson is traveling at β = 0.90 when it decays into a π + and a π − meson. What are the greatest and least speeds
    6·1 answer
  • What is the angle of incidence in air of a light ray whose angle of refraction in glass is half the angle of incidence? Show pro
    10·1 answer
  • How come the arrow points the other direction when we look at it through a glass of water?
    14·1 answer
  • A 71-kg swimmer dives horizontally off a 500-kg raft. If the diver's speed immediately after leaving the raft is 6m/s, what is t
    11·1 answer
  • If a liquid is heated and the temperature at which it boils is measured, the _____ property is being measured.
    7·2 answers
  • Question 11
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!