Answer:
a) 0.138J
b) 3.58m/S
c) (1.52J)(I)
Explanation:
a) to find the increase in the translational kinetic energy you can use the relation

where Wp is the work done by the person and Wg is the work done by the gravitational force
By replacing Wp=Fh1 and Wg=mgh2, being h1 the distance of the motion of the hand and h2 the distance of the yo-yo, m is the mass of the yo-yo, then you obtain:

the change in the translational kinetic energy is 0.138J
b) the new speed of the yo-yo is obtained by using the previous result and the formula for the kinetic energy of an object:

where vf is the final speed, vo is the initial speed. By doing vf the subject of the formula and replacing you get:

the new speed is 3.58m/s
c) in this case what you can compute is the quotient between the initial rotational energy and the final rotational energy

hence, the change in Er is about 1.52J times the initial rotational energy
A). very large
B). very small
These are both wishy-washy words ... words that mean different things
to different people, and may even mean different things to the same person
at different times.
Even if everybody agreed on the meaning of these words, we wouldn't
have any idea which one may apply to the rover, because there's nothing
in the picture that gives any size reference ! We don't know from the picture
whether this thing is the size of a school book or a school bus. Or somewhere
in between.
C). very mathematical
What in the world does this mean ? ?
I don't see a single number or math symbol anywhere in the drawing.
I don't think this is the correct choice.
D). very complex
In the drawing, there are thirteen different labels of things,
and eight of them have such long names that only their initials
are shown.
This is one complicated combination of many different machines.
I think this is the best choice of description.
If a Substance conducts heat easily then it is considered a good conductor, since the electrons can move freely within the substance.
Answer:
12.2 m
Explanation:
Given:
v₀ = 15.6 m/s
v = 0 m/s
a = -10 m/s²
Find: Δy
v² = v₀² + 2aΔy
(0 m/s)² = (15.6 m/s)² + 2 (-10 m/s²) Δy
Δy = 12.2 m