Answer: 26 beats in 2 seconds
Explanation:
The number of beats per second = frequency of tuning fork 1 - frequency of tuning fork 2.
Given :
- frequency of tuning fork 1 = 500Hz
- frequency of tuning fork 2 = 487Hz
Thus,
Beats per second = 500 - 487
= 13 beats per second
Therefore in two(2) seconds, you will have 2 x 13 = 26 seconds.
The answer is:
Both the distance traveled in a given time and the magnitude of the acceleration at a given instant
Hope I Helped!
Answer:
Therefore,
The frequency heard by the engineer on train 1

Explanation:
Given:
Two trains on separate tracks move toward each other
For Train 1 Velocity of the observer,

For Train 2 Velocity of the Source,

Frequency of Source,

To Find:
Frequency of Observer,
(frequency heard by the engineer on train 1)
Solution:
Here we can use the Doppler effect equation to calculate both the velocity of the source
and observer
, the original frequency of the sound waves
and the observed frequency of the sound waves
,
The Equation is

Where,
v = velocity of sound in air = 343 m/s
Substituting the values we get

Therefore,
The frequency heard by the engineer on train 1

Answer:
0.368 cm
Explanation:
x = distance by which the mercury rise
d = depth of the water = 10 cm = 0.10 m
ρ = density of water = 1000 kgm⁻³
ρ' = density of mercury = 13600 kgm⁻³
P₀ = atmospheric pressure
Using equilibrium of pressure on both side
P₀ + ρ g d = P₀ + ρ' g (2x)
(1000) (0.10) = (13600) (2x)
x = 0.00368 m
x = 0.368 cm