1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anestetic [448]
3 years ago
8

How much charge is on each plate of a 3.00-μF capacitor when it is connected toa 15.0-V battery? b) If this same capacitor is c

onnected to a 2.00-V battery, what charge is stored?
Physics
1 answer:
Sauron [17]3 years ago
6 0

Answer:

(a) 45 micro coulomb

(b) 6 micro Coulomb

Explanation:

C = 3 micro Farad = 3 x 10^-6 Farad

V = 15 V

(a) q = C x V

where, q be the charge.

q = 3 x 10^-6 x 15 = 45 x 10^-6 C = 45 micro coulomb

(b)

V = 2 V, C = 3 micro Farad = 3 x 10^-6 Farad

q = C x V

where, q be the charge.

q = 3 x 10^-6 x 2 = 6 x 10^-6 C = 6 micro coulomb

You might be interested in
According to the rule of 72 and about how many years will $78 be worth $39 if the rate of inflation is 5.8%
Monica [59]
The answer is 12.4 years
3 0
3 years ago
Read 2 more answers
Four forces act on a hot-air balloon, as shown
dolphi86 [110]

The magnitude of the resultant force on the balloon is 374.13 N.

The given forces from the image;

  • <em>Upward force = 514 N</em>
  • <em>Downward force = 267 N</em>
  • <em>Eastward force = 678 N</em>
  • <em>Westward force = 397 N</em>

The net vertical force on the balloon is calculated as follows;

F_y = 514 \ N \ \ - \ \ 267 \ N\\\\F_y = 247 \ N

The net horizontal force on the balloon is calculated as follows;

F_x = 678 \ N \ - \ 397 \ N\\\\F_x = 281 \ N

The magnitude of the resultant force on the balloon is calculated as follows;

F = \sqrt{F_y^2 + F_x^2} \\\\F = \sqrt{(247)^2 + (281)^2} \\\\F= 374.13 \ N

Thus, the magnitude of the resultant force on the balloon is 374.13 N.

Learn more here:brainly.com/question/4404327

5 0
2 years ago
A 0.29 kg particle moves in an xy plane according to x(t) = - 19 + 1 t - 3 t3 and y(t) = 20 + 7 t - 9 t2, with x and y in meters
Artist 52 [7]

Answer:

Part a)

F = 7.76 N

Part b)

\theta = -137.7 degree

Part c)

\theta = -127.7 degree

Explanation:

As we know that acceleration is rate of change in velocity of the object

So here we know that

x = -19 + t - 3t^3

y = 20 + 7t - 9t^2

Part a)

differentiate x and y two times with respect to time to find the acceleration

a_x = \frac{d^2}{dt^2}(-19 + t - 3t^3)

a_x = \frac{d}{dt}(0 +1 - 9t^2)

a_x = -18t

a_y = \frac{d^2}{dt^2}(20 + 7t - 9t^2)

a_y = \frac{d}{dt}(0 +7 - 18t)

a_y = -18

Now the acceleration of the object is given as

\vec a = (-18t)\hat i + (-18)\hat j

at t= 1.1 s we have

\vec a = -19.8 \hat i - 18 \hat j

now the net force of the object is given as

\vec F = m\vec a

\vec F = (0.29 kg)(-19.8 \hat i - 18 \hat j)

\vec F = -5.74 \hat i - 5.22 \hat j

now magnitude of the force will be

F = \sqrt{5.74^2 + 5.22^2} = 7.76 N

Part b)

Direction of the force is given as

tan\theta = \frac{F_y}{F_x}

tan\theta = \frac{-5.22}{-5.74}

\theta = -137.7 degree

Part c)

For velocity of the particle we have

v_x = \frac{dx}[dt}

v_x = (0 +1 - 9t^2)

v_y = \frac{dy}{dt}

v_y = (0 +7 - 18t)

now at t = 1.1 s

\vec v = -9.89\hat i - 12.8 \hat j

now the direction of the velocity is given as

\theta = tan^{-1}(\frac{v_y}{v_x})

\theta = tan^{-1}(\frac{-12.8}{-9.89})

\theta = -127.7 degree

7 0
3 years ago
It may seem strange that the selected velocity does not depend on either the mass or the charge of the particle. (For example, w
Charra [1.4K]

Answer:

b) q large and m small

Explanation:

q is large and m is small

We'll express it as :

q > m

As we know the formula:

F = Eq

And we also know that :

F = Bqv

F = \frac{mv^{2} }{r}

Bqv = \frac{mv^{2} }{r}

or Eq = \frac{mv^{2} }{r}

Assume that you want a velocity selector that will allow particles of velocity v⃗  to pass straight through without deflection while also providing the best possible velocity resolution. You set the electric and magnetic fields to select the velocity v⃗ . To obtain the best possible velocity resolution (the narrowest distribution of velocities of the transmitted particles) you would want to use particles with q large and m small.

6 0
3 years ago
To practice Problem-Solving Strategy 7.2 Problems Using Mechanical Energy II. The Great Sandini is a 60.0-kg circus performer wh
sp2606 [1]

Answer:

v = 15.45 m/s

Explanation:

As per mechanical energy conservation we can say that here since friction is present in the barrel so we will have

Work done by friction force = Loss in mechanical energy

so we will have

W_f = (U_i + K_i) - (U_f + K_f)

here we know that

W_f = F_f . d

W_f = 40 \times 4

W_f = 160 J

Initial compression in the spring is given as

F = kx

4400 = 1100 x

x = 4 m

now from above equation

W_f = (\frac{1}{2}kx^2 + 0) - (mgh + \frac{1}{2}mv^2)

160 = (\frac{1}{2}1100(4^2) + 0) - (60 \times 9.8\times 2.50 + \frac{1}{2}(60)v^2)

160 = 8800 - 1470 - 30 v^2

v = 15.45 m/s

3 0
3 years ago
Other questions:
  • A 2.00-kg box is suspended from the end of a light vertical rope. A time-dependent force is applied to the upper end of the rope
    13·1 answer
  • an asteroid flies close to the earth. gravity does what? A.repels the asteroid away from the earth. B. attracts the asteroid and
    13·1 answer
  • Nuclear fission is used for nuclear power plants because it produces what?
    14·1 answer
  • What is the average weight of a fully-grown heart?
    5·1 answer
  • In Milgram's experiment, compliance, or doing what the experimenter asked,
    7·2 answers
  • How many SF does number 0.00403 have?
    8·1 answer
  • What type of Earth scientist would be interested in understanding volcanic eruptions on
    8·2 answers
  • Water displacement is used to find what?<br><br><br><br>a. volume <br><br><br><br>b. density ​
    11·1 answer
  • What is the average translational kinetic energy of nitrogen molecules at 1600 K? A. 1.31x10-20 J. B. 2.31x10-20 J. C. 3.31x10-2
    6·1 answer
  • If themass is 50kg, what weight of water is to be displaced to float on water? why
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!