Answer:
5.0 x 10⁹ years.
Explanation:
- It is known that the decay of a radioactive isotope isotope obeys first order kinetics.
- Half-life time is the time needed for the reactants to be in its half concentration.
- If reactant has initial concentration [A₀], after half-life time its concentration will be ([A₀]/2).
- Also, it is clear that in first order decay the half-life time is independent of the initial concentration.
- The half-life of K-40 = 1.251 × 10⁹ years.
- For, first order reactions:
<em>k = ln(2)/(t1/2) = 0.693/(t1/2).</em>
Where, k is the rate constant of the reaction.
t1/2 is the half-life of the reaction.
∴ k =0.693/(t1/2) = 0.693/(1.251 × 10⁹ years) = 5.54 x 10⁻¹⁰ year⁻¹.
- Also, we have the integral law of first order reaction:
<em>kt = ln([A₀]/[A]),</em>
where, k is the rate constant of the reaction (k = 5.54 x 10⁻¹⁰ year⁻¹).
t is the time of the reaction (t = ??? year).
[A₀] is the initial concentration of (K-40) ([A₀] = 100%).
[A] is the remaining concentration of (K-40) ([A] = 6.25%).
∴ (5.54 x 10⁻¹⁰ year⁻¹)(t) = ln((100%)/( 6.25%))
∴ (5.54 x 10⁻¹⁰ year⁻¹)(t) = 2.77.
∴ t = 2.77/(5.54 x 10⁻¹⁰ year⁻¹) = 5.0 x 10⁹ years.
Molecules move from areas of high concentration to areas of low concentration.
The factors that affect the rate of a reaction are:
- <em>nature of the reactant</em> - when reactants with different chemical composition are exposed to same conditions they would react differently. For instance, when an acid or base is added on litmus paper, blue litmus paper turns red in presence of acid while red litmus paper turns blue when base is added.
- <em>surface area</em>- a compound with small pieces spread over a large area will react faster than a big lump of a compound occupying a small area.
- <em>temperature of reaction</em>- reactants would react faster at high temperatures. this is because they have higher kinetic energy to collide with each other. Hence a plate of food on the table spoils faster than a plate of food in the fridge.
- <em>concentration</em>- an increase in concentration leads to more molecules available to collide and form products. An example, when you add more of indicator in a solution, the color becomes more clear since more particles react to give more color.
- <em>presence of a catalyst</em>- a catalyst lowers the activation energy, which means less energy is required to shift reaction in forward direction. In the presence of iron (Fe) a catalyst, nitrogen N₂ and hydrogen H₂ react to produce NH₃
the answer equals to 29000
Answer:
D. Oxidation
Explanation:
In an <em>electrolytic cell</em>, oxidation (the loss of electrons) takes place at the anode. At the cathode reduction takes place.
A mnemonic technique that could be used is that the process that starts with a vowel (Oxidation) takes place at the place that also starts with a vowel (Anode).