Anything asymmetrical is polar
Answer:
Initially
of nitrogen dioxide were in the container .
Explanation:
Volume of the container at low pressure and at room temperature =
Number of moles in the container = 
After more addition of nitrogen gas at the same pressure and temperature.
Volume of the container after addition = 
Number of moles in the container after addition=
Applying Avogadro's law:
(at constant pressure and temperature)



Initially
of nitrogen dioxide were in the container .
Hello!
Answer:
Gravity
Explanation:
It can settle down and separate over time due to gravity.
Hope this helps! Have a great day!
<h3>
Answer:</h3>
11.84 mol CoF₂
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
- Analyzing Reactions RxN
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Unbalanced] CoCl₂ + F₂ → CoF₂ + Cl₂
[RxN - Balanced] CoCl₂ + F₂ → CoF₂ + Cl₂
[Given] 11.84 moles CoCl₂
[Solve] moles CoF₂
<u>Step 2: Identify Conversions</u>
[RxN] 1 mol CoCl₂ → 1 mol CoF₂
<u>Step 3: Stoich</u>
- [DA] Set up:

- [DA] Multiply/Divide [Cancel out units]:

Explanation:
Atomic number of carbon is 6. So, 4 valence electrons are present.
Therefore, it can form 4 covalent bonds with varying bond angles by sharing its valence electrons.
Catenation is also an important property of carbon. Catenation is bonding with atoms of same element. Carbon skeleton can be formed in any direction and can vary in length, branching, and ring structure.
Elements required for making most of the molecules in living organisms are:
C, H, N, O, P and S
Carbon easily form covalents with other 5 elements.
These properties make carbon most versatile building blocks of the molecules used by living organisms.