If there's just some barium put in an aqueous solution, then it should be something like this.
It's a mixture of a solution and an insoluble solid, so the easiest way to go is through filtration. (Also, I'm assuming the barium is cut into very small chips.)
In a line, simply filter the solution using a folded filter paper in a funnel, collect the residue in a beaker or flask, rinse it with distilled water and let it dry. (Or simply filtering it could be enough, depending on how far your teacher wants you to go.)
Stuff needed:
>filter paper (for separating the solid from the solution)
>funnel (to hold the filter paper)
>beaker or flask (to hold the filtrate)
>distilled water (to rinse the solid)
>spatula (to scoop up the solid)
Procedure:
>Fold filter paper and line the funnel with it. Place the funnel in the flask or beaker.
>Pour solution in. Then add water (I think using tap water might be fine in this case, but you can use distilled water if you'd like) to wash out the container with the solution of any solid you may have not gotten in the first try. Alternatively, you could use a spatula to spoon it onto the filter paper.
>Once everything has been filtered, pour some distilled water on the residue on the filter paper to wash away the solution.
>Take out the filter paper, open it up and let it dry.
This can be used in real life in many occasions. For example, when you make tea, you need to filter the leaves out. Or when you cook the pasta, you put it in a sieve to separate the pasta from the water. Or when you fish using fishing nets, you "filter" the fish from the water.
Answer:
Geothermal energy is heat derived within the sub-surface of the earth. Water and/or steam carry the geothermal energy to the Earth's surface. Depending on its characteristics, geothermal energy can be used for heating and cooling purposes or be harnessed to generate clean electricity.
Explanation:
Mark as brainliest
Answer:
Group 1
Explanation: because the compound has a formula of M2O , the number of valence electrons of M should be 1.
Answer:
Option A
Explanation:
An intensive property is a bulk property, meaning that it is a local physical property of a system that does not depend on the system size or the amount of material in the system. Examples of intensive properties include temperature, T; refractive index, n; density, ρ; and hardness of an object,specific heat, η.
Physical properties can be observed or measured without changing the composition of matter. Physical properties are used to observe and describe matter. Physical properties include: appearance, texture, color, odor, melting point, boiling point, density, solubility, polarity, specific heat and many others.