Answer:
period 6
Explanation:
If the lanthanides were inserted into the periodic table, they would go into periodic 6.
Their atomic number is between 57 - 71 from element lanthanum to lutetium.
- The elements in this period are 15 in number.
- They are also know as elements in the f-block.
The elements that makes up the series are:
Lanthanum
Cerium
Praseodymium
Neodymium
Promethium
Samarium
Europium
Gadolinium
Terbium
Dysprosium
Holmium
Erbium
Thulium
Ytterbium
Lutetium
Answer:
14.33 g
Explanation:
Solve this problem based on the stoichiometry of the reaction.
To do that we need the molecular weight of the masses involved and then calculate the number of moles, find the limiting reagent and finally calculate the mass of AgCl.
2 AgNO₃ + CaCl₂ ⇒ Ca(NO₃)₂ + 2 AgCl
mass, g 6.97 6.39 ?
MW ,g/mol 169.87 110.98 143.32
mol =m/MW 0.10 0.06 0.10
From the table above AgNO₃ is the limiting reagent and we will produce 0.10 mol AgCl which is a mass :
0.10 mol x 143.32 g/mol = 14.33 g
Answer:
Well there is a lot of differences between the two. Its called homogeneous and Heterogeneous mixtures. Homogeneous mixtures are all the substances are evenly distributed throughout the mixture (salt water, air, blood). Heterogeneous mixtures are the substances that are not evenly distributed (chocolate chip cookies, pizza, rocks). So Pasta with sauce and meatballs is heterogeneous and air is homogeneous
HOPE THIS HELPS HAVE A GREAT DAY!!~
Explanation:
Evaporation technique is used to separate a compound dissolved in a solvent by vaporizing the solvent and converting it to gaseous state. This leaves behind the solid residue present in the solution after the pure solvent is vaporized. The solvent vapors can be collected and condensed to get pure solvent. But the solid residue cannot be considered pure as it is the left over solid after all the solvent is evaporated. If the solution has some impurities, the solid left over includes all of the impurities. So, we cannot obtain a pure solid in evaporation technique.
Answer:
The answer to your question is 2 molecules
Explanation:
Unbalanced chemical reaction
H₂(g) + N₂(g) ⇒ NH₃ (g)
Reactants Elements Products
2 H 3
2 N 1
Balanced chemical reaction
3H₂(g) + N₂(g) ⇒ 2NH₃ (g)
Reactants Elements Products
6 H 6
2 N 2
From the balanced chemical reaction we conclude that when 3 molecules of hydrogen react with one molecule of nitrogen, 2 molecules of ammonia will be formed.