T₁ = 27°C = 27 + 273 = 300K, V₁ = 6 L,
T₂ = 150°C = 150 + 273 = 423K, V₂ = ?,
By Charles' Law: V₁/T₁= V₂/T₂
6/300 = V₂/423
423*(6/300) = V₂
8.46 = V₂
Volume at 150°C =8.46 L.
Answer:
C10H22
Explanation:
Molecular Solids comprises of a Vander waal's force of attraction between the molecule. These forces are very weak when compared to ionic and covalent bond.
In Carbon, Carbon is not a molecule but an atom. One of it unique characteristics is that it forms bonds with other carbon atoms. This property is know as catenation. The bond between these carbon atoms is know as covalent bond.
Graphite is an allotrope of carbon. It exists as black , slippery, hexagonal crystals.The carbon atoms in graphite forms flat layers and are joined together by strong covalent bonds. Graphite can be used as lubricant in engines.
Gold (Au) is an element on the periodic table with atomic number 79 and a mass number 197. It exists as a metal. Most times Gold forms hydrogen bonds.
C10H22 is known as decane. It is the tenth compound formed in the series of alkane family( an organic unsaturated carbon chain family). Alkanes are aliphatic hydrocarbons. The forces of attraction between the alkane family are weak.In decane , their exists Vander waal's force which makes Decane C10H22 a Molecular Solid.
Answer:
24.4 amu or g/mole
Explanation:
24 x 0.790 = 19.0 amu
25 x 0.100 = 2.50 amu
26 x 0.110 = 2.86 amu
(Because of the 19.0, the sig figs go only to the 1/10 decimal place)
19.0 + 2.5 + 2.9 = 24.4 amu or g/mole
The relative volumes of chloroform and water that should be used is 9:10
Concentration of solution in chloroform =
( moles of chloroform )
Concentration of solution in water =
( moles of water )
Dissociation constant at
; 
Concentration of solution in chloroform / Concentration of solution in water
Meaning;

Since
mole is present in chloroform and
mole is present in water, Total mole of Caffeine present is 
Now, we substitute our given values into the equation

Therefore, the relative volumes of chloroform and water that should be used is 9:10
Learn more; brainly.com/question/11060225
Answer:
C3 H6 Cl 3
Explanation:
C -24.2%
H - 4.0%
Cl - (100-24.2 - 4.0)=73.8 %
We can take 100g of the substance, then we have
C -24.2 g
H - 4.0 g
Cl - 73.8 g
Find the moles of these elements
C -24.2 g/12.0 g/mol =2.0 mol
H - 4.0 g/1.0 g/mol = 4. 0 mol
Cl - 73.8 g/ 35.5 g/mol = 2.1 mol
Ratio of these elements gives simplest formula of the substance
C : H : Cl = 2 : 4 : 2 = 1 : 2 : 1
CH2Cl
Molar mass (CH2Cl) = 1*12.0 +2*1.0 + 1*35.5 = 49.5 g/mol
Real molar mass = 150 g/mol
real molar mass/ Molar mass (CH2Cl) = 150 /49.5=3
So, Real formula should be C3 H6 Cl 3.