<span>There are several ways to change the frictional force between two objects. The first one is to modify the surfaces of each object that will come in contact with each other. The smoother they get, the less friction there will be. But if the surfaces become rougher, more friction will be generated. If you don’t want to alter the surfaces, you can simply add lubrication to reduce friction.</span>
Answer:
Explanation:
a )
In space due to weightlessness both astronaut and her oxygen tank will float .
when she throws the tank away from spacecraft , she will have a velocity in opposite direction ie towards the spacecraft . This happens due to conservation of momentum . She creates a momentum away so that she can get a momentum towards the spaceship.
So
m₁ v₁ = m₂v₂
12 x 8 = ( 87 - 12 ) x v₂
v₂ = 1.28 m /s
Time allowed = 2 x 60
= 120 s
So maximum distance upto which she can remain away from spacecraft
= 120 x 1.28
= 153 m .
b )
The Newton's law which explains the theory behind it is "third law of motion" . This law gives law of conservation of momentum .
If you are given time and distance, you can determine power if you know
force. watts. energy. joules.
Answer is joules.
Power is defined as the rate of
doing work. Hence power = work / time then you obtain watts. Work is the
product of force and displacement (distance). Hence in formula, w = F x s. In
which the S.I unit of work is joule in the product. This is what you have to
obtain in order to calculate for power.
Answer:
0.699 L of the fluid will overflow
Explanation:
We know that the change in volume ΔV = V₀β(T₂ - T₁) where V₀ = volume of radiator = 21.1 L, β = coefficient of volume expansion of fluid = 400 × 10⁻⁶/°C
and T₁ = initial temperature of radiator = 12.2°C and T₂ = final temperature of radiator = 95.0°C
Substituting these values into the equation, we have
ΔV = V₀β(T₂ - T₁)
= 21.1 L × 400 × 10⁻⁶/°C × (95.0°C - 12.2°C)
= 21.1 L × 400 × 10⁻⁶/°C × 82.8°C = 698832 × 10⁻⁶ L
= 0.698832 L
≅ 0.699 L = 0.7 L to the nearest tenth litre
So, 0.699 L of the fluid will overflow