Answer:
0.98kW
Explanation:
The conservation of energy is given by the following equation,


Where
Mass flow
Specific Enthalpy (IN)
Specific Enthalpy (OUT)
Gravity
Heigth state (In, OUT)
Velocity (In, Out)
Our values are given by,




For this problem we know that as pressure, temperature as velocity remains constant, then


Then we have that our equation now is,



Answer:
I'm pretty sure its B and C
Explanation:
B bc the weight is gravitational pull x mass so when the object has same mass the weight is smaller on moon
C bc mass is the same - you can't change it
The problem seems to be incomplete because there is no question. However, from the problem description, the logical question is to find he acceleration needed by the jet to land on the airplane carrier. The working equation would be:
2ad = v₂² - v₁²
Since the jet stops, v₂ = 0. Substituting the values:
2(a)(95 m) = 0² - [(240 km/h)(1000 m/1 km)(1h/3600 s)]²
Solving for a,
<em>a = -23.39 m/s² (the negative sign indicates that the jet is decelerating)</em>
True, for electricity fossil fuels are burned to turn a steam turbine to generate electricity and natural gas is exactly what it says gas formed from the decay of plant and animal life long ago
Answer:
Explanation:
Volume of the insulating shell is,

Charge density of the shell is,

Here, 

B)
The electric field is 
For 0 <r<R the electric field is zero, because the electric field inside the conductor is zero.
C)
For R <r <2R According to gauss law

substitute 

D)
The net charge enclosed for each r in this range is positive and the electric field is outward
E)
For r>2R
Charge enclosed is zero, so electric field is zero