Answer:
<u>Attributes of E. coli articulation frameworks </u>
Advantages:
-
Quick articulation
-
Simplicity of culture
-
Significant returns
-
Cheap
-
Genome alterations conceivable
-
Large scale manufacturing quick and practical
Disadvantages:
- Proteins with disulfide bonds hard to communicate
- Produce unglycosylated proteins
- Proteins created with endotoxins
- Acetic acid derivation development bringing about cell lethality
- Proteins created as consideration bodies
- produce dormant proteins
- needs collapsing
<u>YEAST SYSTEM </u>
Advantages:
- Nearness of post translational change
- discharge can be recognized by emission signal
- develop in minimal effort media
- straightforward hereditary control
Disadvantages:
<u>Bacillus articulation frameworks </u>
Advantages:
- Solid discharge
- no association of intracellular consideration bodies
- Simplicity of control
- Hereditarily all around portrayed frameworks
- Exceptionally created change and quality substitution advancements.
- Unrivaled development qualities
- financially savvy recuperation
<u>Animal Cells:</u>
Advantage:
- nearness of post interpretation adjustment
Disadvatages
Issues with creature utilization
Can get sullied with creature diseases
Exorbitant downstream preparing
1. Why hydrosphere is important for the living organisms?
2. Why atmosphere is important for the living organisms?
3. Why lithosphere is important for the living organisms?
4. Why biosphere is important for the living organisms?
These are the four questions related to the subsystem of the earth. There are four subsystem of the earth named "lithosphere" which means the land, "hydrosphere" which means water, "biosphere" which means living things and "atmosphere" which means air.
All these subsystems are important for the survival of living creatures on the planet earth because all living organisms depends on these four subsystem.
Learn more: brainly.com/question/24579841
Answer:
<em>The total amount of energy transferred during photosynthesis for this ecosystem equals</em><em> 260,000 kcal/m2/yr.</em>
Explanation:
To answer this question, we need to know that
- gross primary productivity (GPP) = energy captured and converted into chemical energy during photosynthesis
- net primary productivity (NPP) = difference between GPP and respiration rate
So, to calculate GPP we need to sum NPP to Respiration rate. This if,
NPP = 165,000 kcal/m2/yr
R = 95,000 kcal/m2/yr
NPP = GPP – Respiration
Then,
GPP = NPP + R
GPP = 165,000 kcal/m2/yr + 95,000 kcal/m2/yr
GPP = 260,000 kcal/m2/yr
Answer:
The placenta is a unique vascular organ that receives blood supplies from both the maternal and the fetal systems and thus has two separate circulatory systems for blood: (1) the maternal-placental (uteroplacental) blood circulation, and (2) the fetal-placental (fetoplacental) blood circulation. The uteroplacental circulation starts with the maternal blood flow into the intervillous space through decidual spiral arteries. Exchange of oxygen and nutrients take place as the maternal blood flows around terminal villi in the intervillous space. The in-flowing maternal arterial blood pushes deoxygenated blood into the endometrial and then uterine veins back to the maternal circulation. The fetal-placental circulation allows the umbilical arteries
Explanation: