Answer:
1.67 moles
Explanation:
From the balanced equation of reaction:

1 mole of sulfur dioxide, SO2, is required to produce 3 moles of sulfur, S.
<em>If 1 mole SO2 = 3 moles S, then, how many moles of SO2 would be required for 5 moles S?</em>
Moles of SO2 needed = 5 x 1/3
= 5/3 or 1.67 moles
Hence, <u>1.67 moles of SO2 would be required to produce 5.0 moles of S.</u>
Answer:
A) Devices that transfer kinetic energy have a source of power that is in motion
Kinetic energy is the energy in motion, as such, a device that transfers kinetic energy transfers the energy the power source has into other energy forms
B) Kerosene does not easily cold start like diesel which can burn after compression
C) The first law of thermodynamics states that energy is conserved and it can neither be created nor destroyed, but can be changed from one form to another.
Therefore, when energy is not available in a given location or body, it cannot be obtained from that body or location
Explanation:
The picture is not loading as it requires a sign in.
However, I can tell you how to solve this.
Answer:
<span>As the wavelength gets shorter (closer together), the frequency of the wave increases.
Explanation:
The relation between frequency and wavelength can be described by the help of velocity as follows:
velocity = frequency * wavelength
This means that:
frequency = velocity / wavelength
Noting this equation, we will find that:
The frequency and the wavelength are inversely proportional to each other. This means that as the frequency increases, the wavelength decreases and vice versa.
Now, examining the choices given, we can find that the only statement showing the inverse relation between frequency and wavelength is:
</span><span>As the wavelength gets shorter (closer together), the frequency of the wave increases.
Hope this helps :)
</span>
Answer:
PRESSURE is right answer .
Explanation:
You're looking for the number of moles of H2, and you have 6.0 mol Al and 13 mol HCL.
For the first part, you have to make your way from 6.0 mol of Al to mol of H2, right? For that to happen, you need to make a conversion factor that will cancel the mol Al, in such case use the 2 moles of Al from your equation to cancel them out. At the top of the equation, you can use the number of moles of H2 from the equation and find the moles that will be produced for the H2.
6.0mol Al x 3 mol H2/2 mol Al = 9 mol H2
For the second part, you have to make the same procedure, make a conversion factor that will cancel the mol of HCL and for that you need to use the 6 mol HCL from your equation, and at the numerator you can put the 3 mol of H2 from the equation so that you can find the number of moles of H2 that will be produced.
13 mol HCL x 3 mol H2/6 mol HCL = 6.5 mol H2
As it can be seen, HCL produces the less amount of H2 moles. Therefore, the reaction CANNOT produce more than 6.5 mol H2, in that case 6.5 mol will be the maximum number of moles that will be produced at the end because HCL does not have enough to produce more than 6.5 mol.
In that case HCL is the limiting reactant because it limits that will be produced, and so the answer is B!