3.9 g + 12.7 g = 16.6 g
The sum of the masses of potassium and iodine equals the mass of the product, potassium iodide. The results are consistent with he law of conservation of mass.
Hope this heeeelllllllpppppppp
You just need the number of protons and number of neutrons as the mass of eelctrons is negligible
Answer:
Mass of chemical = 1.5 mg
Explanation:
Step 1: First calculate the concentration of the stock solution required to make the final solution.
Using C1V1 = C2V2
C1 = concentration of the stock solution; V1 = volume of stock solution; C2 = concentration of final solution; V2 = volume of final solution
C1 = C2V2/V1
C1 = (6 * 25)/ 0.1
C1 = 1500 ng/μL = 1.5 μg/μL
Step 2: Mass of chemical added:
Mass of sample = concentration * volume
Concentration of stock = 1.5 μg/μL; volume of stock = 10 mL = 10^6 μL
Mass of stock = 1.5 μg/μL * 10^6 μL = 1.5 * 10^6 μg = 1.5 mg
Therefore, mass of sample = 1.5 mg
It is endothermic reaction ΔH>0 (sign is +).
Because it is spontaneous reaction ΔG<span><0 (Gibbs free energy)
</span>ΔG=ΔH-TΔS, so must be TΔS>ΔH and ΔS<span>>0 (sign +).</span>