Answer: There are several ways. The first that comes to mind is a pH meter. A pH electrode Is lowered into the solution, and (Assuming) the pH Meter has been properly calibrated, and the temperature of the solution is set to the calibration of the Meter, the pH can be read directly from an analogue scale or digital readout. Below 7 is acidic, 7 is Neutral, (like Pure Water), and over 7 is Alkaline, or Basic.
A useful, but less accurate method is the use of any number of “pH Indicator Solutions”, which are essentially a type of various colored dyes that change color within differing pH ranges. Usually, if the pH is unknown, a small amount of solution is removed from the container and tested separately - in a “well plate”, or similar method.
These types of dyes, or Indicator Solutions, can be dried upon strips of “pH indicator Paper”, which, depending upon the type can be very useful when carrying out more precisely arrived at pH tests like Titration.
Just to see if a solution is “Acid” or “Base”, Litmus paper is used; “a Red color shows Acidity, and a Blue color, a Base”; ergo, “An Acid Solution will turn Litmus Paper, Red”.
Answer:
Explanation:
You need to remember that the oxidation number of H is +1, except when it is in a metal hydrites like NaH, where its oxidation number is -1. Then, the oxidation number of O is -2, but in peroxides is -1. So with these rules you just have to multiply the ox. number with the name of atoms and all the elements in the reaction must sum 0.
Answer:
Phenols do not exhibit the same pka values as other alcohols;
They are generally more acidic.
Using the knowledge that hydrogen acidity is directly related to the stability of the anion formed, explain why phenol is more acidic than cyclohexane.
Explanation:
According to Bromsted=Lowry acid-base theory,
an acid is a substance that can release
ions when dissolved in water.
So, acid is a proton donor.
If the conjugate base of an acid is more stable then, that acid is a strong acid.
In the case of phenol,
the phenoxide ion formed is stabilized by resonance.

The resonance in phenoxide ion is shown below:
Whereas in the case of cyclohexanol resonance is not possible.
So, cyclohexanol is a weak acid compared to phenol.
Answer: 1.
moles
2. 90 mg
Explanation:

According to stoichiometry:
1 mole of ozone is removed by 2 moles of sodium iodide.
Thus
moles of ozone is removed by =
moles of sodium iodide.
Thus
moles of sodium iodide are needed to remove
moles of 
2. 
According to stoichiometry:
1 mole of ozone is removed by 2 moles of sodium iodide.
Thus 0.0003 moles of ozone is removed by =
moles of sodium iodide.
Mass of sodium iodide=
(1g=1000mg)
Thus 90 mg of sodium iodide are needed to remove 13.31 mg of
.