Mass of CO₂ = 132 g
<h3>Further explanation
</h3>
A mole is a number of particles(atoms, molecules, ions) in a substance
This refers to the atomic total of the 12 gr C-12 which is equal to 6.02.10²³, so 1 mole = 6.02.10²³ particles
Can be formulated :
N = n x No
N = number of particles
n = mol
No = 6.02.10²³ = Avogadro's number
mole also can be formulated :

moles of CO₂ = 3
mass of CO₂(MW=44.01 g/mol) :

Answer:
1.22 x 10²⁵ molecules CO₂
Explanation:
To find the amount of molecules, you need to multiply the number of moles by Avogadro's Number. Avogadro's Number is a ratio which represents the amount of molecules per every 1 mole. It is important to arrange this ratio in a way that allows for the cancellation of units (since you are going from moles to molecules, moles should be in the denominator). The final answer should have 3 sig figs like the given value.
Avogadro's Number:
6.022 x 10²³ molecules = 1 mole
20.2 moles CO₂ 6.022 x 10²³ molecules
--------------------------- x -------------------------------------- = 1.22 x 10²⁵ molecules
1 mole
Percentage Yield = (Actual Yield ÷ Theoretical Yield) × 100
∴ if theoretical yield is 26 g, but only 22.0 is recovered from the reaction,
then Percentage Yield = (22 g ÷ 26 g) × 100
= 84.6 %
Answer:
Objects with the same charge repel each other, and objects with opposite charges attract each other.
Explanation:
The Coulomb law states that opposite charges attract each other and like charges repel each other. That means two positive charges repel each other but a positive and a negative charge attract.