<span>The equation of motion for a rocket in
vertical flight can be obtained from newton’s second law of motion and is
constant-mass system. The equation of motion for a body mass varies with time and mass. When force acts on rocket, the rocket
will accelerate in the direction of force. Therefore, force is equal to the
change in momentum per change in time. For constant mass, force equals mass
times acceleration.</span>
Answer:
Magnitude of Vector = 79.3
Explanation:
When a vector is resolved into its rectangular components, it forms two vector components. These components are named as x-component and y-component, they are calculated by the following formulae:
x-component of vector = (Magnitude of Vector)(Cos θ)
y-component of vector = (Magnitude of Vector)(Sin θ)
where,
θ = angle of the vector with x-axis = 27°
Therefore, using the values in the equation of y-component, we get:
36 = (Magnitude of Vector)(Sin 27°)
Magnitude of Vector = 36/Sin 27°
<u>Magnitude of Vector = 79.3</u>
Answer:
Therefore the ratio of diameter of the copper to that of the tungsten is

Explanation:
Resistance: Resistance is defined to the ratio of voltage to the electricity.
The resistance of a wire is
- directly proportional to its length i.e

- inversely proportional to its cross section area i.e

Therefore

ρ is the resistivity.
The unit of resistance is ohm (Ω).
The resistivity of copper(ρ₁) is 1.68×10⁻⁸ ohm-m
The resistivity of tungsten(ρ₂) is 5.6×10⁻⁸ ohm-m
For copper:


......(1)
Again for tungsten:

........(2)
Given that
and 
Dividing the equation (1) and (2)

[since
and
]



Therefore the ratio of diameter of the copper to that of the tungsten is
